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5.1   Overview 
 
There are two basic types of seismic sensors: inertial seismometers which measure ground 
motion relative to an inertial reference (a suspended mass), and strainmeters or extensometers 
which measure the motion of one point of the ground relative to another. Since the motion of 
the ground relative to an inertial reference is in most cases much larger than the differential 
motion within a vault of reasonable dimensions, inertial seismometers are generally more 
sensitive to earthquake signals. However, at very low frequencies it becomes increasingly 
difficult to maintain an inertial reference, and for the observation of low-order free 
oscillations of the Earth, tidal motions, and quasi-static deformations, strainmeters may 
outperform inertial seismometers. Strainmeters are conceptually simpler than inertial 
seismometers although their technical realization and installation may be more difficult (see 
IS 5.1). This Chapter is concerned with inertial seismometers only. For a more comprehensive 
description of inertial seismometers, recorders and communication equipment see Havskov 
and Alguacil (2002). 
 
An inertial seismometer converts ground motion into an electric signal but its properties can 
not be described by a single scale factor, such as output volts per millimeter of ground 
motion. The response of a seismometer to ground motion depends not only on the amplitude 
of the ground motion (how large it is) but also on its time scale (how sudden it is). This is 
because the seismic mass has to be kept in place by a mechanical or electromagnetic restoring 
force. When the ground motion is slow, the mass will move with the rest of the instrument, 
and the output signal for a given ground motion will therefore be smaller. The system is thus a 
high-pass filter for the ground displacement. This must be taken into account when the ground 
motion is reconstructed from the recorded signal, and is the reason why we have to go to 
some length in discussing the dynamic transfer properties of seismometers. 
 
The dynamic behavior of a seismograph system within its linear range can, like that of any 
linear time-invariant (LTI) system, be described with the same degree of completeness in four 
different ways: by a linear differential equation, the Laplace transfer function (5.2.2), the 
complex frequency response (5.2.3), or the impulse response of the system (5.2.4). The first 
two are usually obtained by a mathematical analysis of the physical system (the hardware). 
The latter two are directly related to certain calibration procedures (5.6.4 and 5.6.5) and can 
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therefore be determined from calibration experiments where the system is considered as a 
“black box”(this is sometimes called an identification procedure). However, since all four are 
mathematically equivalent, we can derive each of them either from a knowledge of the 
physical components of the system or from a calibration experiment. The mutual relations 
between the “time-domain” and “frequency-domain” representations are illustrated in Fig. 
5.1. Practically, the mathematical description of a seismometer is limited to a certain 
bandwidth of frequencies that should at least include the bandwidth of seismic signals. Within 
this limit then any of the four representations describe the system's response to arbitrary input 
signals completely and unambiguously. The viewpoint from which they differ is how 
efficiently and accurately they can be implemented in different signal-processing procedures. 
 
In digital signal processing, seismic sensors are often represented with other methods that are 
efficient and accurate but not mathematically exact, such as recursive (IIR) filters. Digital 
signal processing is however beyond the scope of this section. A wealth of textbooks is 
available both on analog and digital signal processing, for example Oppenheim and Willsky 
(1983) for analog processing, Oppenheim and Schafer (1975) for digital processing, and 
Scherbaum (1996, 2007) for seismological applications. 
 
The most commonly used description of a seismograph response in the classical observatory 
practice has been the “magnification curve”, i.e. the frequency-dependent magnification of the 
ground motion. Mathematically this is the modulus (absolute value) of the complex frequency 
response, usually called the amplitude response. It specifies the steady-state harmonic 
responsivity (amplification, magnification, conversion factor) of the seismograph as a 
function of frequency. However, for the correct interpretation of seismograms, also the phase 
response of the recording system must be known. It can in principle be calculated from the 
amplitude response, but is normally specified separately, or derived together with the 
amplitude response from the mathematically more elegant description of the system by its 
complex transfer function or its complex frequency response. 
 
While for a purely electrical filter it is usually clear what the amplitude response is - a 
dimensionless factor by which the amplitude of a sinusoidal input signal is multiplied - the 
situation is not always as clear for seismometers because different authors may prefer to 
measure the input signal (the ground motion) in different ways: as a displacement, a velocity, 
or an acceleration. Both the physical dimension and the mathematical form of the transfer 
function depend on the definition of the input signal, and one must sometimes guess from the 
physical dimension to what sort of input signal it applies. The output signal, traditionally a 
needle deflection, is now normally a voltage, a current, or a number of counts. 
 
Calibrating a seismograph means measuring (and in some cases adjusting) its transfer 
properties and expressing them as a complex frequency response or one of its mathematical 
equivalents. For most applications the result must be available as parameters of a 
mathematical formula, not as raw data; so determining parameters by fitting a theoretical 
curve of known shape to the data is usually part of the procedure. Practically, seismometers 
are calibrated in two steps. 
 
The first step is an electrical calibration (5.6.1) in which the seismic mass is excited with an 
electromagnetic force. Most seismometers have a built-in calibration coil that can be 
connected to an external signal generator for this purpose. Usually the response of the system 
to different sinusoidal signals at frequencies across the system's passband (5.6.4), to impulses 
or steps (5.6.5), or to arbitrary broadband signals (5.6.6) is observed while the absolute 



 4 

magnification or gain remains unknown. For the exact calibration of sensors with a large 
dynamic range such as those employed in modern seismograph systems, the latter method is 
most appropriate. Shake tables are not suitable to measure the response of a seismometer over 
a large bandwidth. 
 
The second step, the determination of the absolute gain, is more difficult because it requires 
mechanical test equipment in all but the simplest cases (5.6.3). The most direct method is to 
calibrate the seismometer on a shake table (5.6.9) or step table (5.6.10). The frequency at 
which the absolute gain is measured must be chosen so as to minimize noise and systematic 
errors, and is often predetermined by these conditions within narrow limits. Other mechanical 
devices such as mechanical balances and machine tools can also provide a suitable 
mechanical input for an absolute calibration (5.6.10, 5.6.11). 
 
 
5.2   Basic theory 
 
This section introduces some basic concepts of the theory of linear systems. For a more 
complete and rigorous treatment, the reader should consult a textbook such as by Oppenheim 
and Willsky (1983). Digital signal processing is based on the same concepts but the 
mathematical formulations are different for discrete (sampled) signals (see Oppenheim and 
Schafer, 1999, 2009; Scherbaum, 1996, 2007; Plešinger et al., 1996). Readers who are 
familiar with the mathematics may proceed to section 5.3. 
 
 
5.2.1  The complex notation 
 
A fundamental mathematical property of linear time-invariant (LTI) systems such as 
seismographs (as long as they are not driven out of their linear operating range) is that they do 
not change the waveform of sinewaves and of exponentially decaying or growing sinewaves. 
A more abstract mathematical formulation of this statement is that these waveforms are 
eigenfunctions of the differential operators describing LTI systems. An input signal of the 
form 

  )sincos()( 11 tbtaetf t ωωσ +=  (5.1) 
 
will produce an output signal 
 

  )sincos()( 22 tbtaetg t ωωσ ⋅+⋅=  (5.2) 
 
with the same σ  and ω. Note that ω  is the angular frequency, which is π2  times the 
common frequency. Using Euler’s identity 
 

  tjte tj ωωω sincos +=  (5.3) 
 

and the rules of complex algebra, we may write our input and output signals as 

 

                               ][)( )(
1

tjectf ωσ +⋅ℜ=  and ][)( )(
2

tjectg ωσ +⋅ℜ=  (5.4) 
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respectively, where [ ]..ℜ  denotes the real part and 111 jbac −= , 222 jbac −= are complex 
amplitudes. It can now be seen that the only difference between the input and output signal 
lies in the amplitude, not in the waveform. The ratio 12 / cc  is the complex gain of the system, 
and for 0=σ , it is the value of the complex frequency response at the angular frequency ω . 
What we have outlined here may be called the engineering approach to complex notation. The 
sign [ ]..ℜ  for the real part is often omitted but always understood.  
 
The mathematical approach is slightly different in that real signals are not considered to be the 
real parts of complex signals but the sum of two complex-conjugate signals with positive and 
negative frequencies: 
 

  
tjtj ecectf )(*

1
)(

1)( ωσωσ −+ ⋅+⋅=  (5.5) 
 
where the asterisk * denotes the complex conjugate. The mathematical notation is slightly less 
concise, but since for real signals only the term with 1c  must be explicitly written down (the 
other one being its complex conjugate), the two notations become very similar. However, the 

1c  term describes the whole signal in the engineering convention but only half of the signal in 
the mathematical notation! This may easily cause confusion, especially in the definition of 
power spectra. Power spectra computed after the engineer's method (such as the USGS Low 
Noise Model, see 5.5.1 and Chapter 4) attribute all power to positive frequencies and 
therefore have twice the power appearing in the mathematical notation.  
 
 
5.2.2  The Laplace transformation 
 
A signal that has a definite beginning in time (such as the seismic waves from an earthquake) 
can be decomposed into exponentially growing, stationary, or exponentially decaying 
sinusoidal signals with the Laplace integral transformation: 
 

       ∫
∞+

∞−
=

j

j
st dsesF

j
tf

σ

σπ
)(

2
1)( ,        ∫

∞ −=
0

)()( dt
stetfsF . (5.6) 

 
The first integral defines the inverse transformation (the synthesis of the given signal) and the 
second integral the forward transformation (the analysis). It is assumed here that the signal 
begins at or after the time origin. s is a complex variable that may assume any value for which 
the second integral converges; depending on )(tf , it may not converge when s has a negative 
real par). The Laplace transform )(sF  is then said to “exist” for this value of s. The real 
parameter σ which defines the path of integration for the inverse transformation (the first 
integral) can be arbitrarily chosen as long as the path remains on the right side of all 
singularities of )(sF  in the complex s plane. This parameter decides whether )(tf  is 
synthesized from decaying ( 0<σ ), stationary ( 0=σ ) or growing )0( >σ  sinusoids 

Remember that the mathematical expression tse  with complex s represents a growing or 
decaying sinewave, and with imaginary s a pure sinewave.  
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The time derivative )(tf  has the Laplace transform )(sFs ⋅ , the second derivative )(tf  has 
)(2 sFs ⋅ , etc. Suppose now that an analog data-acquisition or data-processing system is 

characterized by the linear differential equation 
 

                         )()()()()()( 012012 tgdtgdtgdtfctfctfc ++=++ 
 (5.7) 

 
where )(tf  is the input signal, )(tg  is the output signal, and the ci and di are constants. We 
may then subject each term in the equation to a Laplace transformation and obtain 
 

                  )()()()()()( 01
2

201
2

2 sGdssGdsGsdsFcssFcsFsc ++=++  (5.8) 
 
from which we get 

  
)()(

01
2

2

01
2

2 sF
dsdsd
cscsc

sG
++
++

=
 

(5.9)
 

 
We have thus expressed the Laplace transform of the output signal by the Laplace transform 
of the input signal, multiplied by a known rational function of s. From this we obtain the 
output signal itself by an inverse Laplace transformation. This means, we can solve the 
differential equation by transforming it into an algebraic equation for the Laplace transforms. 
Of course, this is only practical if we are able to evaluate the integrals analytically, which is 
the case for a wide range of “mathematical” signals. Real signals must be approximated by 
suitable mathematical functions for a transformation. The method can obviously be applied to 
linear and time-invariant differential equations of any order. (Time-invariant means that the 
properties of the system, and hence the coefficients of the differential equation, do not depend 
on time.) 
 
The rational function 

  01
2

2

01
2

2)(
dsdsd
cscsc

sH
++
++

=
 

(5.10)
 

 
is the (Laplace) transfer function of the system described by the differential equation (5.7). It 
contains the same information on the system as the differential equation itself. 
 
Generally, the transfer function H(s) of an LTI system is the complex function for which 
 
  )()()( sFsHsG ⋅=  (5.11) 
 
with F(s) and G(s) representing the Laplace transforms of the input and output signals. 
 
A rational function like H(s) in (5.10), and thus an LTU system, can be characterized up to a 
constant factor by its poles and zeros. This is discussed in section 5.2.6. 
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5.2.3  The Fourier transformation 
 
Somewhat closer to intuitive understanding but mathematically less general than the Laplace 
transformation is the Fourier transformation 
 

                   
,)(~

2
1)( ωω
π

ω deFtf tj∫
∞

∞−
=

     ∫
∞

∞−
−= dtetfF tjωω )()(~

 (5.12) 
 
The signal is here assumed to have a finite energy so that the integrals converge. The 
condition that no signal is present at negative times can be dropped in this case. The Fourier 
transformation decomposes the signal into purely harmonic (sinusoidal) waves tje ω . The 
direct and inverse Fourier transformation are also known as a harmonic analysis and 
synthesis. 
 
Although the mathematical concepts behind the Fourier and Laplace transformations are 
different, we may consider the Fourier transformation as a special version of the Laplace 
transformation for real frequencies, i.e. for ωjs = . In fact, by comparison with Eq. (5.6), we 
see that )()(~ ωω jFF = , i.e. the Fourier transform for real angular frequencies ω  is identical 
to the Laplace transform for imaginary ωjs = . For practical purposes the two 
transformations are thus nearly equivalent, and many of the relationships between time signals 
and their transforms (such as the convolution theorem) are similar or the same for both. The 
function )(~ ωF  is called the complex frequency response of the system. Some authors use the 
name “transfer function” for )(~ ωF  as well; however, )()(~ ωω jFF =  is not the same function 
as )(ωF , so a different name are appropriate. The distinction between )(~ ωF  and )(sF  is 
essential when systems are characterized by their poles and zeros. These are equivalent but 
not identical in the complex s and ω planes, and it is important to know whether the Laplace 
or Fourier transform is meant. Usually, poles and zeros are given for the Laplace transform. In 
case of doubt, check the symmetry of the poles and zeros in the complex plane: those of the 
Laplace transform are symmetric to the real axis as in Figure 1 of exercise EX 5.7  while 
those of the Fourier transform are symmetric to the imaginary axis. 
 
The absolute value )(~ ωF  is called the amplitude response, and the phase of  )(~ ωF  the phase 

response of the system. Note that amplitude and phase do not form a symmetric pair; however 
a certain mathematical symmetry (expressed by the Hilbert transformation) exists between the 
real and imaginary parts of a rational transfer function, and between the phase response and 
the natural logarithm of the amplitude response. 
 
The definition of the Fourier transformation according to Eq. (5.12) applies to continuous 
transient signals. For other mathematical representations of a signal, different definitions must 
be used: 

            

Ttvj

v
vebtf /2)( π∑

∞

−∞=

=
, 

dtetf
T

b TtjT
v

/2
0

)(1 νπ−∫=
 

(5.13)
 

 
for periodic signals f(t) with a period T, and 
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Mlkj
M

l
lk ec

M
f /2

1

0

1 π∑
−

=

=
,    

Mlkj
M

k
kl efc /2

1

0

π−
−

=
∑=

 
(5.14)

 
 
for time series fk consisting of M equidistant samples (such as digital seismic data). We have 
written the inverse transform (the synthesis) first in each case. The successive approximation 
of arbitrary signals by sums of sine waves is demonstrated in the fourierdemo program 
(section 5.8).  
 
The Fourier integral transformation (Eq. 5.12) is mainly an analytical tool; the integrals are 
not normally evaluated numerically because the discrete Fourier transformation (Eq. 5.14) 
permits more efficient computations. Eq. (5.13) is the Fourier series expansion of periodic 
functions, also mainly an analytical tool but also useful to represent periodic test signals. The 
discrete Fourier transformation (Eq. 5.13) is sometimes considered as being a discretized, 
approximate version of Eqs. (5.12) or (5.14) but is actually a mathematical tool in its own 
right: it is a mathematical identity that does not depend on any assumptions on the series fk. 
Its relationship with the other two transformations, and especially the interpretation of the 
subscript l as representing a single frequency, do however depend on the properties of the 
original, continuous signal. The most important condition is that the bandwidth of the signal 
before sampling must be limited to less than half of the sampling rate fs; otherwise the 
sampled series will not contain the same information as the original. The bandwidth limit fn = 
fs/2 is called the Nyqvist frequency. Whether we consider a signal as periodic or as having a 
finite duration (and thus a finite energy) is to some degree arbitrary since we can analyze real 
signals only for finite intervals of time, and it is then a matter of definition whether we 
assume the signal to have a periodic continuation outside the interval or not.  
 
The Fast Fourier Transformation or FFT (Cooley and Tukey, 1965) is a recursive algorithm to 
compute the sums in Eq. (5.14) efficiently, and does not constitute a mathematically different 
definition of the discrete Fourier transformation. 
 
 
5.2.4  The impulse response 
 
A useful (although mathematically difficult) fiction is the Dirac “needle” pulse )(tδ  (e.g. 
Oppenheim and Willsky, 1983), supposed to be an infinitely short, infinitely high, positive 
pulse at the time origin whose integral over time equals 1. It can not be realized, but its time-
integral, the unit step function, can be approximated by switching a current on or off or by 
suddenly applying or removing a force. According to the definitions of the Laplace and 
Fourier transforms, both transforms of the Dirac pulse have the constant value 1. The 
amplitude spectrum of the Dirac pulse is “white”, this means, it contains all frequencies with 
equal amplitude. In this case Eq. (5.11) reduces to G(s)=H(s). The transfer function H(s) is 
thus the Laplace transform of the impulse response g(t). Likewise, the complex frequency 
response is the Fourier transform of the impulse response. All information contained in these 
complex functions is also contained in the impulse response of the system. The same is true 
for the step response, which is often used to test or calibrate seismic equipment. 
 
Explicit expressions for the response of a linear system to impulses, steps, ramps and other 
simple waveforms can be obtained by evaluating the inverse Laplace transform over a suitable 
contour in the complex s plane, provided that the poles and zeros are known. The result, 
generally a sum of decaying complex exponential functions (sinusoids), can then be 
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numerically evaluated with a computer or even a calculator. Although this is an elegant way 
of computing the response of a linear system to simple input signals with any desired 
precision, a warning is necessary: the numerical samples so obtained are not the same as the 
samples obtained with a digitizer. The digitizer must limit the bandwidth before sampling and 
therefore does not generate instantaneous samples but some sort of time-averages. For 
computing samples of band-limited signals, different mathematical concepts must be used 
(Schuessler, 1981). 
 
Specifying the impulse or step response of a system in place of its transfer function is not 
practical because the analytic expressions are cumbersome to write down and represent 
signals of infinite duration that can not be tabulated in full length.  

 

5.2.5  The convolution theorem 
 
Any signal may be understood as consisting of a sequence of pulses. This is obvious in the 
case of sampled signals, but can be generalized to continuous signals by representing the 
signal as a continuous sequence of Dirac pulses. We may construct the response of a linear 
system to an arbitrary input signal as a sum over suitably delayed and scaled impulse 
responses. This process is called a convolution: 
 

  ∫ ∫
∞ ∞

−=−=
0 0

')'()'(')'()'()( dttftthdtttfthtg
 (5.15) 

 
Here f(t) is the input signal and g(t) the output signal while h(t) characterizes the system. We 
assume that the signals are causal (i.e. zero at negative time), otherwise the integration would 
have to start at ∞− . Taking )()( ttf δ= , i.e. using a single impulse as the input, we get  
 

          ∫ =−= )(')'()'()( thdtttthtg δ ,  
 
so h(t) is in fact the impulse response of the system. 
 
The response of a linear system to an arbitrary input signal can thus be computed either by 
convolution of the input signal with the impulse response in time domain, or by multiplication 
of the Laplace-transformed input signal with the transfer function, or by multiplication of the 
Fourier-transformed input signal with the complex frequency response in frequency domain. 
 
Since instrument responses are often specified as a function of frequency, the FFT algorithm 
has become a standard tool to compute output signals. The FFT method assumes, however, 
that all signals are periodic, and is therefore mathematically inaccurate when this is not the 
case. Signals must in general be tapered to avoid spurious results. (A taper is a weight 
function that is zero or small at the beginning and end of the time interval). Fig. 5.1 illustrates 
the interrelations between signal processing in the time and frequency domains. 
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Fig. 5.1 Pathways of signal processing in the time and frequency domains. The asterisk 
between h(t) and f(t) indicates a convolution. An interactive version of this scheme with a 
number of test signals is available as a BASIC program filtdemo (section 5.8). Since  the 
complex frequency response of a layered elastic medium can be expressed by a mathematical  
formula, this scheme can also be used for computation of synthetic seismograms. 
 
 
In digital processing, these methods translate into convolving discrete time series or 
transforming them with the FFT method and multiplying the transforms. For impulse 
responses with more than 100 samples, the FFT method is usually more efficient. The 
convolution method is also known as a FIR (finite impulse response) filtration. A third 
method, the recursive or IIR (infinite impulse response) filtration (e.g. Oppenheim and 
Schafer, 2009) is often preferred for its flexibility and efficiency.  The design of IIR filters 
requires special attention because for mathematical reasons they cannot exactly represent 
rational transfer functions (see the remarks under 5.6.6). 
 
 
5.2.6  Specifying a system 
 
When )(sP  is a polynomial of s and α  is a specific value of s for which 0)( =αP , then α  is 
called a zero, or a root, of the polynomial. A polynomial of order n has n complex zeros iα , 
and can be factorized as ∏ −⋅= )()( isspsP . Thus, the zeros of a polynomial together with 
the constant p determine the polynomial completely. Since our transfer functions )(sH  are 
the ratio of two polynomials as in Eq. (5.10), they can be specified by their zeros (the zeros of 
the numerator )(sG ), their poles (the zeros of the denominator )(sF ), and a gain factor (or 
equivalently the total gain at a given frequency). The whole system, as long as it remains in its 
linear operating range and does not produce noise, can thus be described by a small number of 
discrete parameters. 
 
Transfer functions are usually specified according to one of the following concepts: 
 
1. The real coefficients of the polynomials in the numerator and denominator are listed.  
 
2. The denominator polynomial is decomposed into normalized first-order and second-order 

factors with real coefficients (a total decomposition into first-order factors would require 
complex coefficients). The factors can in general be attributed to individual modules of 
the system. They are preferably given in a form from which corner periods and damping 
coefficients can be read, as in Eqs. (5.23) to (5.25). The numerator often reduces to a gain 
factor times a power of s. 
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3. The poles and zeros of the transfer function are listed together with a gain factor. Poles 
and zeros must either be real or symmetric to the real axis, as mentioned above. When the 
numerator polynomial is sm, then s = 0 is an m-fold zero of the transfer function, and the 
system is a high-pass filter of order m. (Zeros at nonzero frequency do normally not 
appear in the transfer function of broadband seismographs because, if they occur 
mathematically, their effect must practically be cancelled by nearby poles; otherwise the 
response would not be called broadband.) Depending on the order n of the denominator 
and accordingly on the number of poles, the response may be flat at high frequencies (n = 
m), or the system may act as a low-pass filter there (n > m). The case n < m can occur 
only as an approximation in a limited bandwidth because no practical system can have an 
unlimited gain at high frequencies.  

 
In the header of the widely used SEED-format data (10.4), the gain factor is split up into a 
normalization factor bringing the gain to unity at a specified normalization frequency in the 
passband of the system, and a gain factor representing the actual gain at this frequency. Text 
versions of dataless SEED headers, named response files or RESP files, can be downloaded 
for a large number of seismic stations from the IRIS Data Management 
Center: http://www.iris.edu/dms/mda.htm . EX_5.5 contains an exercise in determining the 
response from given poles and zeros. An interactive, tutorial program polzero in BASIC is 
available for this purpose (section 5.8). RESP files are normally evaluated under LINUX with 
the EVALRESP software offered by the IRIS Data Management Center. The first section of a 
RESP file that describes the seismometer can also be interpreted in a MS-DOS environment 
with the winresp program (section 5.8, polzero folder). See also the exercises and worksheets 
mentioned at the end of section 5.2. 
 
 
5.2.7  The mechanical pendulum 
 
The simplest physical model for an inertial seismometer is a mass-and-spring system with 
viscous damping (Fig. 5.2). 
 
We assume that the seismic mass is constrained to move along a straight line without rotation 
(i.e., it performs a pure translation). The mechanical elements are a mass of M kilograms, a 
spring with a stiffness S (measured in Newtons per meter), and a damping element with a 
constant of viscous friction D (in Newtons per meter per second). Let the time-dependent 
ground motion be x(t), the absolute motion of the mass y(t), and its motion relative to the 
ground )()()( txtytz −= . An acceleration y(t) of the mass results from any external force 

)(tf  acting on the mass, and from the forces transmitted by the spring and the damper: 
 
       )()()()( tzDtzStftyM  −−= . (5.16) 
 
Since we are interested in the relationship between z(t) and x(t), we rearrange this into 
 
                 )()()()()( txMtftzStzDtzM  −=++ . (5.17) 
 

We observe that an acceleration ( )x t of the ground has the same effect as an external force of 
magnitude )()( txMtf −=  acting on the mass in the absence of ground acceleration. We may 
thus simulate a ground motion x t( )  by applying a force xM − (t) to the mass while the 

http://www.iris.edu/dms/mda.htm
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ground is not moving. The force is normally generated by sending a current through an 
electromagnetic transducer, but it may also be applied mechanically. 

 

 
 

Fig. 5.2 Elements of a mechanical harmonic oscillator. 
 
 

5.2.8  Transfer functions of pendulums and electromagnetic seismometers 
 
According to Eqs. (5.7) and (5.8), Eq. (5.17) can be rewritten as 
 
  XMsFZSDsMs 22 )( −=++  (5.18) 
or 
  )///()/( 22 MSMDssXsMFZ ++−= . (5.19) 
 
From this we can obtain directly the transfer functions Tf = Z/F for the external force F and Td 
= Z/X for the ground displacement X. We arrive at the same result, expressed by the Fourier- 
transformed quantities, by simply assuming a time-harmonic motion πω 2/~)( tjeXtx =  as well 

as a time-harmonic external force πω 2/~)( tjeFtf = , for which Eq. (5.17) reduces to 
 

  XMFZSRjM ~~~)( 22 ωωω +=++−  (5.20) 
or 

  )//(/)~/~(~ 22 MSMRjXMFZ ++−+= ωωω . (5.21) 
 
While in mathematical derivations it is convenient to use the angular frequency ω = 2π f to 
characterize a sinusoidal signal of frequency f, and some authors omit the word „angular“ in 
this context, we reserve the term „frequency“ to the number of cycles per second. 
 
By checking the behavior of )(~ ωZ  in the limit of low and high frequencies, we find that the 
mass-and-spring system is a second-order high-pass filter for displacements and a second-
order low-pass filter for accelerations and external forces (see Fig. 5.3). Its corner frequency 
is  fo=ω0/2π with ω0 = MS / . This is at the same time the „eigenfrequency“ or „natural 
frequency“ with which the mass oscillates when the damping is negligible. At the angular 
frequency ω0 , the ground motion X~  is amplified by a factor ω0 M/R and phase shifted by 
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π/2. The imaginary term in the denominator is usually written as hj 02 ωω  where 
)2/( 0MDh ω=  is the numerical damping, i.e., the ratio of the actual to the critical damping.  

 
In order to convert the motion of the mass into an electric signal, the mechanical pendulum in 
the simplest case is equipped with an electromagnetic velocity transducer (see 5.3.8) whose 
output voltage we denote with U~ . We then have an electromagnetic seismometer (or 
geophone when designed for seismic exploration). When the responsivity of the transducer is 
E (volts per meter per second; ZEjU ~~ ω−= ) we get 
 
                             )2/()~/~(~ 2

00
22 ωωωωωω ++−+−= hjXMFEjU  (5.22) 

 
from which, in the absence of an external force (i.e. 0)( =tf , 0~ =F ), we obtain the 
frequency-dependent complex response functions 
 
                           )2/(~/~:)(~ 2

0
23

od hjEjXUH ωωωωωω ++−−==  (5.23) 
 
for the displacement, 
 

                           )2/()~/(~:)(~ 2
0

22
ov hjEXjUH ωωωωωωω ++−−==  (5.24) 

 
for the velocity, and 
 
                           )2/()~/(~:)(~ 2

00
22 ωωωωωωω ++−=−= hjEjXUH a  (5.25) 

 
for the acceleration. 
 
With respect to its frequency-dependent response, the electromagnetic seismometer is a 
second-order high-pass filter for the velocity, and a band-pass filter for the acceleration. Its 
response to displacement has no flat part and no concise name. These responses (or, more 
precisely speaking, the corresponding amplitude responses) are illustrated in Fig. 5.3.  
  
The mathematical and graphical representation of the response is the subject of several 
exercises and information sheets in this manual. EX 5.5 requires different mathematical 
descriptions of a broadband seismograph and EX 5.6 derives such descriptions for the now 
historical WWSSN-LP seismograph. IS 5.2 and EX 5.1 by J. Bribach explain the construction 
of Bode diagrams, a standardized asymptotic representation of the amplitude response. 
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Fig. 5.3 Response curves of a mechanical seismometer (spring pendulum, left) and 
electrodynamic seismometer (geophone, right) with respect to different kinds of input signals 
(displacement, velocity and acceleration). The normalized frequency is the signal frequency 
divided by the eigenfrequency (corner frequency) of the seismometer. All of these response 
curves have a second-order corner at the normalized frequency 1. Step responses of second-
order high-pass, band-pass and low-pass filters are shown in Fig. 5.23. 
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5.3  Design of seismic sensors 
 
Although the mass-and-spring system of Fig. 5.2 is a useful mathematical model for a 
seismometer, it is incomplete as a practical design. The suspension must suppress five out of 
the six degrees of freedom of the seismic mass (three translational and three rotational) but the 
mass must still move as freely as possible in the remaining direction. This section discusses 
some of the mechanical concepts by which this can be achieved. In principle it is also possible 
to let the mass move in all directions and observe its motion with three orthogonally arranged 
transducers, thus creating a three-component sensor with only one suspended mass. Indeed, 
some historical instruments have made use of this concept. However, it is difficult to 
minimize the restoring force and to suppress parasitic rotations of the mass when its 
translational motion is unconstrained. Modern three-component seismometers therefore have 
separate mechanical sensors for the three axes of motion. 
 
 
 5.3.1  Pendulum-type seismometers 
 
Most seismometers are of the pendulum type, i.e., they let the mass rotate around an axis 
rather than move along a straight line (Fig. 5.4 to Fig. 5.7). The point bearings in our figures 
are for illustration only; most seismometers have crossed flexural hinges. Pendulums are not 
only sensitive to translational but also to angular acceleration. Forbriger (2009) shows 
however that this sensitivity depends on an arbitrary definition. In order to decompose the 
motion of the pendulum into a translational and a rotational part, we must define an axis of 
rotation. When it is properly chosen, the rotational sensitivity disappears. The rotational 
component of seismic signals is however normally so small that there is no practical 
difference between linear-motion and pendulum-type seismometers.  
 
 

 
 

 
Fig. 5.4 (a) Garden-gate suspension; (b) Inverted pendulum. 

 
For small translational ground motions the equation of motion of a pendulum is formally 
identical to Eq. (5.17) but z must then be interpreted as the angle of rotation. Since the 
rotational counterparts of the constants M, D, and S in Eq. (5.17) are of little interest in 
modern electronic seismometers, we will not discuss them further and refer the reader instead 
to the older literature, such as Berlage (1932) or Willmore (1979). 
 
The simplest example of a pendulum is a mass suspended with a string or wire (like 
Foucault’s pendulum). When the mass has small dimensions compared to the length  of the 
string so that it can be idealized as a point mass, then the arrangement is called a 
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mathematical pendulum. Its period of oscillation is gT /2 π= where g is the gravitational 
acceleration. A mathematical pendulum of 1 m length has a period of nearly 2 seconds; for a 
period of 20 seconds the length has to be 100 m. Clearly, this is not a suitable design for a 
long-period seismometer. 
 
 
 5.3.2  Decreasing the restoring force 
 
At low frequencies and in the absence of an external force, Eq. (5.17) can be simplified to 

xMSz −= and read as follows: A relative displacement z∆−  of the seismic mass indicates a 
ground acceleration  
 
 zTzzMSx ∆=∆=∆= 2

0
2

0 )/2()/( πω (5.26) 
 
where 0ω  is the angular eigenfrequency of the pendulum, and T0  its eigenperiod. If z∆  is 
the smallest mechanical displacement that can be measured electronically, then the formula 
determines the smallest ground acceleration that can be observed at low frequencies. For a 
given transducer, it is inversely proportional to the square of the free period of the suspension. 
A sensitive long-period seismometer therefore requires either a pendulum with a low 
eigenfrequency or a very sensitive transducer. Since the eigenfrequency of an ordinary 
pendulum is essentially determined by its size, and seismometers must be reasonably small, 
astatic suspensions have been invented that combine small overall size with a long free 
period. 
 
The simplest astatic suspension is the “garden-gate” pendulum used in horizontal 
seismometers (Fig. 5.4a). The mass moves in a nearly horizontal plane around a nearly 
vertical axis. Its free period is the same as that of a mass suspended from the point where the 
plumb line through the mass intersects the axis of rotation (Fig. 5.5a). The eigenperiod 

απ sin/20 gT = is infinite when the axis of rotation is vertical (α = 0), and is usually 
adjusted by tilting the whole instrument. This is one of the earliest designs for long-period 
horizontal seismometers. Another early design is the inverted pendulum held in stable 
equilibrium by springs or by a stiff hinge (Fig. 5.4b); a famous example is Wiechert's 
horizontal pendulum built around 1905.  
 
An astatic spring geometry for vertical seismometers invented by LaCoste (1934) is shown in 
Fig. 5.6a. The mass is in neutral equilibrium and has therefore an infinite free period when 
three conditions are met: the spring is pre-stressed to zero length (i.e. the spring force is 
proportional to the total length of the spring), its end points are seen under a right angle from 
the hinge, and the mass is balanced in the horizontal position of the boom. A finite free period 
is obtained by making the angle of the spring slightly smaller than 90°, or by tilting the frame 
accordingly. By simply rotating the pendulum, astatic suspensions with a horizontal or 
oblique (Fig. 5.6b) axis of sensitivity can be constructed as well. 
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Fig. 5.5    Equivalence between a tilted “garden-gate” pendulum and a string pendulum. For a 
free period of 20 s, the string pendulum must be 100 m long. The tilt angle α of a garden-gate 
pendulum with the same free period and a length of 30 cm is about 0.2°. The longer the period 
is made, the less stable it will be under the influence of small tilt changes. (b) Period-
lengthening with an auxiliary compressed spring. 
 
 

 

 
 

Fig. 5.6   LaCoste suspensions. 
 
 
The astatic leaf-spring suspension (Fig. 5.7a, Wielandt, 1975), in a limited range around its 
equilibrium position, is comparable to a LaCoste suspension but is much simpler to 
manufacture. A similar spring geometry is used in the triaxial seismometer Streckeisen STS2 
(Fig. 5.7b, DS 5.1 and Wielandt and Streckeisen, 1982). The delicate equilibrium of forces in 
astatic suspensions makes them susceptible to external disturbances such as changes in 
temperature; they are difficult to operate without a stabilizing feedback system. 
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Fig. 5.7    Leaf-spring astatic suspensions. 
 
 
Apart from genuinely astatic designs, almost any seismic suspension can be made astatic with 
an auxiliar spring acting normal to the line of motion of the mass and pushing the mass away 
from its equilibrium (Fig. 5.5b). The long-period performance of such suspensions, however, 
is quite limited. Neither the restoring force of the original suspension nor the destabilizing 
force of the auxiliary spring can be made perfectly linear (i.e. proportional to the 
displacement). While the linear components of the force may cancel, the nonlinear terms 
remain and cause the oscillation to become non-harmonic and even unstable at large 
amplitudes. Viscous and hysteretic behavior of the springs may also cause problems. The 
additional spring (which has to be soft) may introduce parasitic resonances. Modern 
seismometers do not use this concept and rely either on a genuinely astatic spring geometry or 
on the sensitivity of electronic transducers. 
 
 
5.3.3  Sensitivity of horizontal seismometers to tilt 
 
We have already seen (Eq. (5.17)) that a seismic acceleration of the ground has the same 
effect on the seismic mass as an external force. The largest such force is gravity. It is normally 
cancelled by the suspension, but when the seismometer is tilted, the projection of the vector of 
gravity onto the axis of sensitivity changes, producing a force that is in most cases 
undistinguishable from a seismic signal (Fig. 5.8).  

 

 

 
 
Fig. 5.8    The relative motion of the seismic mass is the same when the ground is accelerated 
to the left as when it is tilted to the right. 
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Undesired tilt at seismic frequencies may be caused by moving or variable surface loads such 
as cars, people, and atmospheric pressure. The resulting disturbances are a second-order effect 
in well-adjusted vertical seismometers but otherwise a first-order effect (see Rodgers, 1968; 
Rodgers, 1969). This explains why horizontal long-period seismic traces are always noisier 
than vertical ones. A short, impulsive tilt excursion is equivalent to a step-like change of 
ground velocity and therefore will cause a long-period transient in a horizontal broadband 
seismometer. For periodic signals, the apparent horizontal displacement associated with a 
given tilt increases with the square of the period. At tidal and lower frequencies, all horizontal 
seismometers act as tiltmeters. 

 

Fig. 5.9 illustrates the effect of barometrically induced ground tilt. Let us assume that the 
ground is vertically deformed by as little ± 1 µm over a distance of 3 km, and that this 
deformation oscillates with a period of 10 minutes. A simple calculation then shows that 
seismometers A and C see a vertical acceleration of ± 10-10 m/s² while B sees a horizontal 
acceleration of ± 10-8 m/s2. The horizontal noise is thus 100 times larger than the vertical one. 
In absolute terms, even the vertical acceleration is by a factor of four above the minimum 
ground noise in one octave as specified by the USGS Low Noise Model (see 5.5.1) 
 
 
 

 
 
Fig. 5.9    Ground tilt caused by the atmospheric pressure is the main source of very-long-
period noise on horizontal seismographs. 
 
 
5.3.4  Direct effects of barometric pressure 
 
Besides tilting the ground, the continuously fluctuating barometric pressure affects 
seismometers in at least three different ways: (1) when the seismometer is not enclosed in a 
hermetic housing, the mass will experience a variable buoyancy which can cause large 
disturbances in vertical sensors; (2) changes of pressure also produce adiabatic changes of 
temperature which affect the suspension (see the next subsection). Both effects can be greatly 
reduced by making the housing airtight or installing the sensor inside an external pressure 
jacket; however, then (3) the housing or jacket may be deformed by the pressure and these 
deformations may be transmitted to the seismic suspension as stress or tilt. While it is always 
worthwhile to protect vertical long-period seismometers from changes of the barometric 
pressure, it has often been found that horizontal long-period seismometers are less sensitive to 
barometric noise when they are not hermetically sealed. This, however, may cause other 
problems such as corrosion. 
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5.3.5   Effects of temperature 
 
The equilibrium between gravity and the spring force in a vertical seismometer is disturbed 
when the temperature changes. Although thermally self-compensated alloys are available for 
springs, such a spring does not make a compensated seismometer. The geometry of the whole 
suspension changes with temperature; the seismometer must therefore be compensated as a 
whole. However, the different time constants involved prevent an efficient compensation at 
seismic frequencies. Short-term changes of temperature, therefore, must be suppressed by the 
combination of thermal insulation and thermal inertia. Special caution is required with 
seismometers where electronic components are enclosed with the mechanical sensor: these 
instruments heat themselves up when insulated and are then very sensitive to air drafts, so the 
insulation must at the same time suppress any possible air convection (5.5.3). Long-term 
(seasonal) changes of temperature do not interfere with the seismic signal (except when they 
cause convection in the vault) but may drive the seismic mass out of its operating range. Eq. 
(5.26) can be used to calculate the thermal drift of a vertical seismometer when the 
temperature coefficient of the spring force is formally assigned to the gravitational 
acceleration. 
 
 
5.3.6  Sensitivity to magnetic fields 
 
Broadband seismometers are to some degree sensitive to magnetic fields because all thermally 
self-compensated spring materials are magnetic. This may be noticeable when seismometers 
are operated in industrial areas or in the vicinity of dc-powered railway lines. Magnetic 
interferences by trains must especially be suspected when the long-period noise follows a 
regular timetable. Magnetic storms have frequently been seen in seismograms. At a very quiet 
site, the natural background variations of the geomagnetic field may limit the long-period 
resolution of a vertical sensor when its magnetic sensitivity exceeds 0.5 m/s2 per Tesla 
(Forbriger 2007, Forbriger et al. 2010). It is apparently difficult for manufacturers to avoid 
this level of magnetic sensitivity. Seismometers can also accidentally acquire a remanent 
magnetization during transportation or installation. Magnetic shielding (see 5.5.4 and IS 5.4) 
is therefore recommended at quiet sites. 
 
 
5.3.7  The homogeneous triaxial arrangement 
 
In order to observe ground motion in all directions, a triple set of seismometers oriented 
towards North, East, and upward (Z) has been the standard for a century. However, horizontal 
and vertical seismometers differ in their construction, and it takes some effort to make their 
responses equal. An alternative way of manufacturing a three-component set is to use three 
sensors of identical construction whose sensitive axes are inclined against the vertical like the 
edges of a cube standing on its corner (Fig. 5.10), by an angle of arctan 2 , or 54.7 degrees. 
A technical advantage of this concept is that the spring has to support only a fraction of the 
pendulum’s weight, so the spring can be lighter and have a higher parasitic resonance.  
 
The homogeneous-triaxial geometry was, with different intentions, introduced by Gal´perin 
(1955, 1977), Knothe (1963), and Melton and Kirkpatrick (1970), and is presently used in the 
Streckeisen STS2 and Nanometrics Trillium broadband seismometers.  
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Fig. 5.10   The homogeneous triaxial geometry of the STS2 seismometer 
 
 
Since most seismologists want finally to see the conventional E, N and Z components of 
motion, the oblique components U, V, W of the STS2 are electrically recombined according 
to 
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The X axis of the STS2 seismometer is normally oriented towards East; the Y axis then points 
North. Noise originating in one of the sensors of a triaxial seismometer will appear on all 
three outputs (except for Y being independent of U). Its origin can be traced by transforming 
the X, Y and Z signals back to U, V and W with the inverse (transposed) matrix (programs 
triax and rectax (lincomb folder, section 5.8). Disturbances affecting only the horizontal 
outputs are unlikely to originate in the seismometer and are, in general, due to tilt. 
Disturbances of the vertical output only may be related to temperature, barometric pressure, or 
electrical problems common to all three sensors such as an unstable supply voltage. 
 
 
5.3.8  Electromagnetic velocity sensing and damping 
 
The simplest transducer both for sensing motions and for exerting forces is an electromagnetic 
(electrodynamic) device where a coil moves in the field of a permanent magnet, as in a 
loudspeaker (Fig. 5.11). The motion induces a voltage in the coil; a current flowing in the coil 
produces a force. From the conservation of energy it follows that the responsivity of the coil-
magnet system as a force transducer, in Newtons per Ampere, and its responsivity as a 
velocity transducer, in Volts per meter per second, are identical. The units are in fact the same 
(remember that 1Nm = 1Joule = 1VAs). When such a velocity transducer is loaded with a 
resistor, permitting a current to flow, then according to Lenz's law it generates a force, 
opposing the motion. This effect is used to damp the mechanical free oscillation of passive 
seismic sensors (geophones and electromagnetic seismometers). 
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Fig. 5.11   Electromagnetic velocity and force transducer. 

 
 
We have so far treated the damping of passive sensors as if it were a viscous effect in the 
mechanical receiver. Actually, only a small part hm of the damping is due to mechanical 
causes. The main contribution normally comes from the electromagnetic transducer, which is 
suitably shunted for this purpose. Its contribution is 
 
  del RMEh 0

2 2/ ω=  (5.28) 
 
where Rd is the total damping resistance (the sum of the resistances of the coil and of the 
external shunt). The total damping hm+hel is preferably chosen as 2/1 , a value that defines a 
second-order Butterworth filter characteristic, and gives a maximally flat response in the 
passband (such as the velocity-response of the electromagnetic seismometer in Fig. 5.3). 

 

 
5.3.9  Electronic displacement sensing 
 
At very low frequencies, the output signal of electromagnetic transducers becomes too small 
to be useful for seismic sensing. One then uses active electronic transducers where a carrier 
signal, usually in the audio frequency range, is modulated by the motion of the seismic mass. 
The basic modulating device is an inductive or capacitive half-bridge. Inductive half-bridges 
are detuned by a movable magnetic core. They require no electric connections to the moving 
part and are environmentally robust; however their sensitivity appears to be limited by the 
granular nature of magnetism to something like 10-10 m. Capacitive half-bridges (Fig. 5.12) 
are realized as three-plate capacitors where either the central plate or the outer plates move 
with the seismic mass. Their resolution is limited by the ratio between the electrical noise of 
the demodulator and the electrical field strength , and is, for modern broadband seismometers, 
typically better than 10-12  m  in the short-period teleseismic band. The comprehensive paper 
by Jones and Richards (1973) on the design of capacitive transducers still represents state-of-
the-art in all essential aspects.  
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Fig. 5.12   Capacitive displacement transducer (Blumlein bridge). 
 
 
5.3.10  Electrochemical (MET) transducers 
 
The motion of a liquid electrolyte in a tube can be sensed with fine mesh electrodes through 
which the liquid flows, by utilizing electrochemical effects at the interface between the 
electrodes and the liquid. According to one source (www.mettechnology.com) such sensors 
were first developed for the inertial guidance of German rocket weapons in the second world 
war, then investigated in the US but soon abandoned there, finally developed to practical 
usefulness in Russia based on theoretical work by V. A. Kozlov and V. Agafonof. The 
transducers were named Solions (from solution and ion) in the US and Molecular-Electronic 
(MET) by Russian authors.  

In a partly filled circular tube or in a linear tube closed by elastic membranes, the liquid acts 
as a seismic mass, resulting in mechanically simple and very robust seismic sensors. Their 
transfer function is however not so simple because hydrodynamic and diffusive processes are 
involved. A description by poles and zeros as for pendulum-type sensors is mathematically 
inadequate although it can serve as an approximation. MET seismometers have some practical 
advantages: they are small and rugged, have a low power consumption, and don’t need mass 
locking, mass centering or leveling. This makes them especially useful for ocean-bottom 
seismographs (see Chapter 7, section 7.5). They cannot, however, compete with observatory-
grade pendulum instruments in other respects: resolution, precision, linearity. Force feedback 
is difficult to combine with the MET principle.  

The MET principle is also used in rotational sensors where a circular tube is completely filled 
with the electrolyte. In this application they appear to be superior to mechanical devices; their 
symmetric design makes them virtually insensitive to linear acceleration. Rotational 
components of ground motion have been observed with MET sensors in the near-field of 
seismic sources, and with costly laser-gyroscopic devices at teleseismic distances from large 
earthquakes (see IS 5.3). 

 
 
5.4   Force-balance accelerometers and seismometers 
 
5.4.1   The force-balance principle 
 
In a conventional passive seismometer, the inertia of the mass makes it move against the 
frame when the frame is accelerated, and the relative displacement or velocity of the mass is 
then converted into an electric signal. This principle of measurement is now used for short-
period seismometers only. Broadband seismometers are built according to the force-balance 
principle. The inertial force is compensated (or 'balanced') with an electrically generated force 

http://www.mettechnology.com/
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so that the seismic mass follows the motion of the frame; of course some small relative 
motion must remain because otherwise the inertial force could not be observed. The feedback 
force is generated with an electromagnetic force transducer or ‘forcer’ (Fig. 5.11). The 
electronic circuit (Fig. 5.13) is a servo loop, like in an analog chart recorder, and adjusts the 
feedback force so that the mass follows the motion of the frame.  
 

 
 

         Fig. 5.13   Feedback circuit of a force-balance accelerometer (FBA).  
 
 
The servo loop is most effective when it contains an integrator, in which case the offset of the 
mass is exactly nulled in the time average. (In a chart recorder, the difference between the 
input signal and a voltage indicating the pen position, is nulled). Due to unavoidable delays in 
the feedback loop, force-balance systems have a limited bandwidth; however, at frequencies 
where they are effective, they generate a feedback force that is proportional to ground 
acceleration. When the force is proportional to the current in the transducer, then the current, 
the voltage across the feedback resistor R, and the output voltage are all proportional to 
ground acceleration. Thus we have converted the acceleration into an electric signal without 
depending on the precision of a mechanical suspension. 
 
The response of a force-balance system is approximately inverse to the gain of the feedback 
path. It can be easily modified by giving the feedback path a frequency-dependent gain. For 
example, if we make the capacitor C large so that it determines the feedback current, then the 
gain of the feedback path increases linearly with frequency and we have a system whose 
responsivity to acceleration is inverse to frequency and thus flat to velocity over a certain 
passband. We will look more closely at this option in section 5.4.3. 
 
 
5.4.2  Force-balance accelerometers 
 
Fig. 5.13 without the capacitor C represents the circuit of a force-balance accelerometer 
(FBA), a device that is widely used for earthquake strong-motion recording, for measuring 
tilt, and for inertial navigation. By equating the inertial and the electromagnetic force, it is 
easily seen that the responsivity (the output voltage per ground acceleration) is 
 
                                                EMRxU out // =  (5.29) 
 
where M is the seismic mass, R the total resistance of the feedback path, and E the 
responsivity of the forcer (in N /A). The conversion is determined by only three passive 
components of which the mass is error-free by definition (it defines the inertial reference), the  
resistor is  a nearly ideal component, and the force transducer very precise because the motion 
is small. Some accelerometers do not have a built-in feedback resistor; the user can insert a 
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resistor of his own choice and thus select the gain. The responsivity in terms of current per 
acceleration is simply EMxIout // = . 
 
FBAs work down to zero frequency but the servo loop becomes ineffective at some upper 
corner frequency f0 (usually a few hundred to a few thousand Hz), above which the 
arrangement acts like an ordinary inertial displacement sensor. The feedback loop behaves 
like an additional stiff spring; the response of the FBA sensor corresponds to that of a 
mechanical pendulum with the eigenfrequency f0, as schematically represented in the left 
panels of Fig. 5.3. 
 
 
5.4.3  Velocity broadband seismometers 
 
For broadband seismic recording with high sensitivity, an output signal proportional to 
ground acceleration is unfavorable. At high frequencies, sensitive accelerometers are easily 
saturated by traffic noise or impulsive disturbances. At low frequencies, a system with a 
response flat to acceleration generates a permanent voltage at the output as soon as the 
suspension is not completely balanced. The system might then be saturated by the offset 
voltage resulting from thermal drift or tilt. What we need is a band-pass response in terms of 
acceleration, or equivalently a high-pass response in terms of ground velocity, like that of a 
normal electromagnetic seismometer (geophone, right panels in Fig. 5.3) but with a lower 
corner frequency. 
 
The desired velocity broadband (VBB) response is obtained from the FBA circuit by adding 
paths for differential feedback and integral feedback (Fig. 5.14). A large capacitor C is chosen 
so that the differential feedback dominates throughout the desired passband. While the 
feedback current is still proportional to ground acceleration as before, the voltage across the 
capacitor C is a time integral of the current, and thus proportional to ground velocity. This 
voltage serves as the output signal. The output voltage per ground velocity, i.e. the apparent 
generator constant Eapp of the feedback seismometer, is 
 
  ECMxVE outapp // ==  . (5.30) 
 
Again the response is essentially determined by three passive components. Although a 
capacitor with a solid dielectric is not quite as ideal a component as a good resistor, the 
response is still linear and very stable. 
 

 
 
Fig. 5.14  Feedback circuit of a VBB (velocity-broadband) seismometer. As in Figure 5.13, 
the seismic mass is the summing point of the inertial force and the negative feedback force. 
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The output signal of the second integrator is normally accessible at the ,,mass position" 
output. It does not indicate the actual position of the mass but indicates where the mass would 
go if the feedback were switched off. ”Centering" the mass of a feedback seismometer has the 
effect of discharging the integrator so that its full operating range is available for the seismic 
signal. The mass-position output is not normally used for seismic recording but is useful as a 
state-of-health diagnostic, and is used in some calibration procedures. 
 
The relative strength of the integral feedback increases at lower frequencies while that of the 
differential feedback decreases. These two components of the feedback force are of opposite 
phase (- π/2 and π/2 relative to the output signal, respectively). At certain low frequency, the 
two contributions are of equal strength and cancel each other out. This is the lower corner 
frequency of the closed-loop system. Since the closed-loop response is inverse to that of the 
feedback path, one would expect to see a resonance in the closed-loop response at this 
frequency. However, the proportional feedback remains and damps the resonance; the resistor 
R acts as a damping resistor. At lower frequencies, the integral feedback dominates over the 
differential feedback, and the closed-loop response to ground velocity decreases with the 
square of the frequency. As a result, the feedback system behaves like a conventional 
electromagnetic seismometer and can be described by the usual three parameters: free period, 
damping, and generator constant. In fact, electronic broadband seismometers, even if their 
actual electronic circuit is more complicated than presented here, follow the simple theoretical 
response of electromagnetic seismometers more closely than those ever did. 
 
As far as the response is concerned, a force-balance circuit as described here may be seen as a 
means to convert a moderately stable short- to medium-period suspension into a stable 
electronic long-period or very-long-period seismometer. The corner period may be increased 
by a large factor, for example 24-fold (from 5 to 120 sec) in the STS2 seismometer or even 
200-fold (from 0.6 to 120 sec) in CMG3 and Trillium seismometers. But this factor says little 
about the performance of the system. Feedback does not reduce the instrumental noise; a large 
extension of the bandwidth is useless when the system is noisy. According to Eq. (5.26), 
short-period suspensions must be combined with extremely sensitive transducers for a 
satisfactory sensitivity at long periods. 
 
At some high frequency, the loop gain falls below unity. This is the upper corner frequency of 
the feedback system which marks the transition from a response flat to velocity to one flat to 
displacement. A well-defined and nearly ideal behavior of the seismometer, like at the lower 
corner frequency, should not be expected here both because the feedback becomes ineffective 
and because most suspensions have parasitic resonances slightly above the electrical corner 
frequency (otherwise they could have been designed for a larger bandwidth). The detailed 
response at the high-frequency corner, however, rarely matters since the upper corner 
frequency is usually outside the passband of the record. Its effect on the transfer function in 
most cases can be modeled as a small, constant delay (a few milliseconds) over the whole 
VBB passband. 
 
 
5.4.4  Other methods of bandwidth extension 
 
The force-balance principle permits the construction of high-performance, broadband seismic 
sensors but is not easily applicable to geophone-type sensors because fitting a displacement 
transducer to these is difficult. Sometimes it is desirable to broaden the response of an 
existing geophone without a mechanical redesign. 
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The simplest solution is to send the output signal of the geophone through a filter that 
removes its original response (this is called an inverse filtration) and replaces it by some other 
desired response, preferably that of a geophone with a lower eigenfrequency. The analog, 
electronic version of this process would only be used in connection with direct visible 
recording; for all other purposes, one would implement the filtration digitally as part of the 
data processing.  
 
Alternatively, the bandwidth of a geophone may be enlarged by strong damping. This does 
not enhance the gain outside the passband but rather reduces it at and around the 
eigenfrequency; nevertheless, after appropriate amplification, the net effect is an extension of 
the bandwidth towards longer periods. Strong damping is obtained by connecting the coil to a 
preamplifier whose input impedance is negative. The total damping resistance, which is 
otherwise limited by the resistance of the coil (Eq. (5.28)), can then be made arbitrarily small. 
The response of the over-damped geophone is flat to acceleration around its free period. It can 
be made flat to velocity by an approximate (band-limited) integration. This technique is used 
in the Lennartz Le-1d and Le-3d seismometers (see DS 5.1) whose electronic corner period 
can be up to 40 times larger than the mechanical one. Although these are not strictly force-
balance sensors, they take advantage of the fact that active damping (which is a form of 
negative feedback) greatly reduces the relative motion of the mass. 
 
 

5.5   Seismic noise, site selection and installation 
 
Electronic seismographs can be designed for any desired magnification of the ground motion. 
A practical limit, however, is imposed by the presence of undesired signals which must not be 
magnified so strongly as to obscure the record. Such signals are usually referred to as noise 
and may be of seismic, instrumental, or environmental origin. Seismic noise is treated in 
Chapter 4; see also exercise EX_4.1. Instrumental self-noise may have mechanical and 
electronic sources and will be discussed in the next section. Here we focus on those general 
aspects of site selection and of seismometer installation aimed at the reduction of 
environmental noise. For technical details on site selection as well as vault, tunnel and 
borehole installations see Chapter 7. More recommendations for proper deployment and 
shielding of seismometers are summarized in the information sheet IS 5.4. 
 
 
5.5.1  The USGS low-noise model 
 

 
 
 
Fig. 5.15  The USGS New Low Noise Model (NLNM), here expressed as RMS amplitude of 
ground acceleration in a constant relative bandwidth of one-sixth decade. 
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The USGS low-noise model (Peterson, 1993; see Fig. 5.15) is a graphical and numerical 
representation of the lowest vertical seismic noise levels observed worldwide, and is 
extremely useful as a reference for the quality of a site or of an instrument. A recent 
compilation of minimum noise levels by Berger at al. (2004) has essentially confirmed the 
validity of the NLNM below 5 Hz; at higher frequencies the NLNM appears to be somewhat 
too low. Origin and properties of seismic noise are discussed in Chapter 4. The noisecon 
program (section 5.8) can be used to convert power spectral densities of the NLNM into other 
units (such as rms amplitudes in a given bandwidth) and vice versa. 
 
 
5.5.2  Site selection 
 
Site selection for a permanent station is always a compromise between two conflicting 
requirements: infrastructure and low seismic noise. The noise level depends on the geological 
situation and on the proximity of sources, some of which are usually associated with the 
infrastructure. A seismograph installed on solid basement rock can be expected to be fairly 
insensitive to local disturbances while one sitting on a thick layer of soft sediments will be 
noisy even in the absence of identifiable sources. As a rule, the distance from potential 
sources of noise, such as roads and inhabited houses, should be very much larger than the 
thickness of the sediment layer. Broadband seismographs can be successfully operated in 
major cities when the geology is favorable; in unfavorable situations, such as in sedimentary 
basins, only deep mines and boreholes may offer acceptable noise levels (see 4.3.2, 7.4.3 and 
7.4.5). 
 
By definition of the Low Noise Model, most sites have a noise level above the NLNM, 
sometimes by a large factor. This factor, however, is not uniform over time or over the 
seismic frequency band. At short periods (< 2 s), a noise level within a factor of 10 of the 
NLNM may be considered very good in most areas. Short-period noise at most sites is 
predominantly man-made, lower during nighttime, and somewhat larger in the horizontal 
components than in the vertical. At intermediate periods (2 to 20 s), marine microseisms 
dominate. They have similar amplitudes in the horizontal and vertical components and have 
large seasonal variations. In winter they may be 50 dB above the NLNM. At longer periods, 
the vertical ground noise is often within 10 or 20 dB of the NLNM even at otherwise noisy 
stations. Horizontal long-period noise may nevertheless be horrible at the same station due to 
tilt-gravity coupling (5.3.3). It may be larger than vertical noise by a factor of up to 300, the 
factor increasing with period. Therefore, a site can be considered as favourable when the 
horizontal noise at 100 to 300 s is within 20 dB (i.e., a factor of 10 in amplitude) above the 
vertical noise. Tilt may be caused by traffic, wind, or local fluctuations of the barometric 
pressure. Large tilt noise is sometimes observed on concrete floors when an unventilated 
cavity exists underneath; the floor then acts like a membrane. Such noise can be identified by 
its linear polarization and its correlation with the barometric pressure. Even on an apparently 
solid foundation, the long-period noise often correlates with the barometric pressure (see 
Beauduin et al., 1996). If the situation can not be remedied otherwise, the barometric pressure 
should be recorded with the seismic signal and used for a correction. An example of 
barometric noise is shown in Fig. 2.21 of Chapter 2. For very-broadband seismographic 
stations, barometric recording is generally recommended. 
 
Besides ground noise, environmental conditions must be considered. An aggressive 
atmosphere may cause corrosion, wind and short-term variations of temperature may induce 
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noise, and seasonal variations of temperature may exceed the manufacturer’s specifications 
for unattended operation. Seismometers must be protected against these conditions, 
sometimes by hermetic containers as described in the next subsection. Suggestions for vault 
design have been given by Uhrhammer and Karavas (1997) and Trnkoczy (1998) and more 
recently by the PASSCAL Instrument Center (2009a). Since it is difficult to prevent water 
from accumulating in vaults, installation of a drainage or a sump pump should be considered 
(Passcal Instrument Center 2009b).  
 
 
5.5.3  Seismometer installation 
 
We briefly describe the installation of a portable broadband seismometer inside a building, 
vault, or cave. First, the orientation of the sensor is marked on the floor. This is best done with 
a geodetic gyroscope, but a magnetic compass will do in most cases. The magnetic 
declination must be taken into account. Since a compass may be deflected inside a building, 
the direction should be taken outside and transferred to the site of installation. Spirit levels 
combined with a laser, and especially laser cross levels, are most convenient tools for 
orienting seismometers, and are available at low cost from do-it-yourself stores. When the 
magnetic declination is unknown or unpredictable (such as at high latitudes or in volcanic 
areas), the orientation should be determined with a sun compass. 
 
To isolate the seismometer from stray currents, small glass or Plexiglas plates should be 
cemented to the ground under its feet. Then the seismometer is installed, tested, and wrapped 
with a layer of soft, thermally insulating material such as fiber wool or a synthetic fleece 
blanket. It is essential that the inner heat shield is so soft that it cannot transport substantial 
forces to the sensor. An additional heat-reflecting blanket (commonly sold as “space blanket” 
or “rescue blanket”) protects the sensor from thermal radiation and air drafts. The thermal 
shield should also cover the floor around the seismometer (see Figures 1 to 5 in IS 5.4). The 
use of Styrofoam seeds is not recommended; they have been observed to cause mechanical 
noise. Stiff shields such as Styrofoam boxes provide additional protection but must not touch 
the sensor. The self-heating of electronic seismometers can induce convection in any open 
space inside the insulation; it is therefore important that the insulation leaves no gap around 
the seismometer, or at most a gap that is only a few millimeters wide.  
 
For a permanent installation under unfavourable environmental conditions, the seismometer 
should be enclosed in a hermetic container. A problem with such containers (as with all 
seismometer housings) is, however, that they cause tilt noise when they are deformed by the 
barometric pressure. Essentially three precautions are possible: (1) either the base-plate is 
carefully cemented to the floor, or (2) it is made so massive that its deformation is negligible, 
or (3) a “warp-free” design is used, as described by Holcomb and Hutt (1992) for the STS1 
seismometers. Some fresh desiccant (Silica gel) should be placed inside the container, even 
into the vacuum bell of STS1 seismometers. Cable connectors corrode easily in a humid 
environment. All extra connectors and auxiliary electronic equipment should therefore be 
protected with closed (as far as possible) plastic bags and desiccant. Fig. 5.16 illustrates the 
shielding of the STS2 seismometers (see DS 5.1) in the German Regional Seismic Network 
(GRSN). For more details see Figures 1 to 7 in IS 5.4. Guidelines for the installation of 
broadband seismometers can also be found in Uhrhammer et al. (1998) and more specifically 
for the installation of both weak-motion (short-period and broadband) and strong-motion 
seismometers on land, in vaults, tunnels, mines and boreholes as well as in the ocean 
environment in the Sub-chapters 7.4 and 7.5 of  this Manual.  
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        Fig. 5.16  The STS2 seismometer of the GRSN inside its shields. 
 
 
5.5.4  Magnetic shielding 
 
Magnetic shields can be manufactured from Permalloy (Mu-metal) but they are expensive and 
of limited efficiency. An active compensation may be preferable. Such a device might consist 
of a three-component fluxgate magnetometer that senses the field near the seismometer, an 
electronic driver circuit in which the signal is integrated with a short time constant (a few 
milliseconds) and amplified, and a three-component set of Helmholtz coils that compensate 
changes of the magnetic field (see Figures 6 and 7 in IS 5.4). The permanent geomagnetic 
field should not be compensated; the resulting offsets of the fluxgate outputs can be 
compensated electrically before the integration, or with a small permanent magnet mounted 
near the fluxgate.  
 
 
5.5.5  Instrumental self-noise 
 
All modern seismographs use semiconductor amplifiers which, like other active (power-
dissipating) electronic components, produce continuous electronic noise whose origin is 
manifold but ultimately related to the quantization of the electric charge. Electromagnetic 
transducers, such as those used in geophones, also produce thermal electronic noise (resistor 
noise, Johnson noise). The contributions from semiconductor noise and resistor noise are 
often comparable, and together limit the sensitivity of the system. Another source of 
continuous noise, the Brownian (thermal) motion of the seismic mass, may be noticeable 
when the mass is very small (less than a few grams). Presently manufactured observatory-
grade seismometers have sufficient mass to make the Brownian noise negligible against noise 
from other sources and we will therefore not discuss it here. Seismographs may also suffer 
from transient disturbances originating in slightly defective semiconductors or in stressed 
mechanical parts of the seismometer. The present section is mainly concerned with 
identifying and measuring instrumental noise. 
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5.5.6  Self-noise of electromagnetic short-period seismographs 
 
Electromagnetic seismometers and geophones are passive sensors whose self-noise is of 
purely thermal origin and does not increase at low frequencies as it does in active (power-
dissipating) devices. Their output signal level , however, is comparatively low, so a low-noise 
preamplifier (Fig. 5.17) must be inserted between the geophone and the recorder. We will call 
this combination an electromagnetic seismograph or EMS. Unfortunately the preamplifier 
noise does increase at low frequencies and limits the overall sensitivity. EMSs are now rarely 
used for long-period or broadband recording because of the superior performance of feedback 
instruments. 
 
The sensitivity of an EMS is normally limited by amplifier noise. However, this noise does 
not depend on the amplifier alone but also on the impedance of the electromagnetic transducer 
coil (which can be chosen within wide limits). Up to a certain impedance the amplifier noise 
voltage is nearly constant, but then it increases linearly with the impedance, due to a noise 
current flowing out of the amplifier input. On the other hand, the signal voltage increases with 
the square root of the coil impedance. The best signal-to-noise ratio is therefore obtained with 
an optimum source impedance defined by the corner between voltage and current noise in the 
graph of total noise vs. source impedance, and is different for each type of amplifier and also 
depends on frequency. Vice versa, when the transducer is given, the amplifier must be 
selected for low noise at the relevant impedance and frequency. 
 
 

 
 
Fig. 5.17  Two alternative circuits for an EMS preamplifier with a low-noise op-amp. The 
non-inverting circuit is generally preferable when the damping resistor Rl is much larger than 
the coil resistance and the inverting circuit when it is comparable or smaller. However, the 
relative performance also depends on the noise specifications of the op-amp. The gain is 
adjusted with Rg. 
 
 
The electronic noise of an EMS can be predicted when the technical data of the sensor and the 
amplifier are known. Semiconductor noise increases at low frequencies; amplifier 
specifications must apply to seismic rather than audio frequencies. In combination with a 
given sensor, the noise can then be expressed as an equivalent seismic noise level and 
compared to real seismic signals or to the NLNM (Fig. 5.15). As an example, Fig. 5.18 shows 
the self-noise of one of the better seismometer-amplifier combinations. It resolves minimum 
ground noise between 0.1 and 10 s period. Discussions and more examples are found in 
Riedesel et al. (1990) and in Rodgers (1992, 1993 and 1994). The result is easily summarized: 
 

Most well-designed seismometer-amplifier combinations resolve minimum ground noise up 
to 6 or 8 s period, that is, to the microseismic peak. A few of them may make it to about 15 s; 
they marginally resolve the secondary microseismic peak. To resolve minimum ground noise 
up to 30 s is hopeless, as is obvious from Fig. 5.18. Ground noise falls and electronic noise 
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rises so rapidly beyond a period of 20 s that the crossover point can not be substantially 
moved towards longer periods. Of course, at a reduced level of sensitivity, restoring long-
period signals from short-period sensors may make sense, and the long-period surface waves 
of sufficiently large earthquakes may well be recorded with short-period electromagnetic 
seismometers. 

 

      
 

Fig. 5.18   Electronic self-noise of the input stage of a short-period seismograph. The EMS is 
a Sensonics Mk3 with two 8 kOhm coils in series and tuned to a free period of 1.5 s. The 
amplifier is the LT1012 op-amp. The curves a and b refer to the circuits of Fig. 5.17. NLNM 
is the USGS New Low Noise Model (Fig. 5.15). The ordinate gives rms noise amplitudes in 
dB relative to 1 m/s2 in 1/6 decade. 

 

Amplifier noise can be observed by locking the sensor or tilting it so that the mass is firmly at 
a stop, or by replacing it with a resistor that has the same resistance as the coil. If these 
manipulations do not significantly reduce the noise, then obviously the EMS does not resolve 
seismic noise. However, this is only a test, not a way to precisely measure the electronic self-
noise. A locked sensor or a resistor do not exactly represent the electric impedance of the 
unlocked sensor. 
 
 
5.5.7  Self-noise of force-balance seismometers 
 
Although the self-noise of force-balance seismometers can theoretically be predicted from 
that of its components, such a prediction may be unrealistic because certain sources of noise 
appear only under operating conditions. Anyhow, the user can hardly test the components 
without destroying the instrument. The electronic circuit cannot be tested when the mass is 
locked. The instrumental noise can thus only be observed under operating conditions, in the 
presence of seismic signals and seismic noise.  
 
Although seismic noise is generally a nuisance in this context, natural signals may also be 
useful as test signals. Marine microseisms should be visible on any sensitive seismograph 
whose seismometer has a free period of one second or longer; they normally are the strongest 
continuous signal in a broadband trace. However, their amplitude exhibits large seasonal and 
geographical variations. For broadband seismographs at quiet sites, the tides of the solid Earth 
 are a reliable and predictable test signal. They have a predominant period of slightly less than 
12 hours and an amplitude in the order of 10-6 m/s2. While normally invisible in the raw data, 
they may be extracted by low-pass filtration with a corner frequency of 1 mHz. For this 
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purpose it is helpful to have the data available with a sampling rate of 1 per second or less. By 
comparison with the predicted tides, the gain and polarity of the seismograph may be checked 
(e.g. Davis and Berger 2007). A seismic broadband station that records Earth’s tides is likely 
to be up to international standards. 
 
 
5.5.8  Coherency analysis 
 
For a quantitative determination of instrumental noise, two or three instruments must be 
operated side by side (Holcomb, 1989, 1990; Sleeman et al. 2006). One can then determine 
the coherency between the records and assume that coherent noise is seismic and incoherent 
noise is instrumental. This works well if one has a quiet site and a good reference instrument, 
but the method is not safe. The seismometers may respond coherently to environmental 
disturbances caused by barometric pressure, temperature, the supply voltage, magnetic fields, 
vibrations, or electromagnetic waves. Nonlinear behavior (intermodulation) may produce 
coherent but spurious long-period signals. When no good reference instrument is available, 
then different instrument types should be used in the test that are unlikely to respond in the 
same way to environmental disturbances. 
 
The coherency analysis is somewhat tricky in detail when only two instruments are available. 
When the transfer functions of both instruments are precisely known, it is in fact theoretically 
possible to determine the seismic signal and the instrumental noise of each instrument 
separately as a function of frequency. Alternatively, one may assume that the transfer 
functions are not so well known but the reference instrument is noise-free; in this case the 
noise and the relative transfer function of the other instrument can be determined. The 
coherency test with three instruments after Sleeman et al. (2006) permits to determine the 
relative transfer functions and the instrumental noise of each instrument at the same time, so it 
requires no questionable assumptions. It may fail, however, when physically different sources 
of noise are present such as seismic and magnetic noise to which the instruments do not have 
a uniform response (they may, for example, have the same response to seismic but not to 
magnetic noise). As with all statistical methods, very long time series or multiple observations 
are required for significant results. We offer the computer programs twocrosp and tricrosp 
for the analysis (see 5.8, sleeman folder). 

 

5.5.9  Transient disturbances 
 
Most new seismometers produce spontaneous transient disturbances, quasi miniature 
earthquakes caused by stresses in the mechanical components. Although they do not 
necessarily originate in the spring, their waveform at the output seems to indicate a sudden 
and permanent (step-like) change in the spring force. Long-period seismic records are 
sometimes severely degraded by such disturbances. The transients often die out within 
months or years; if they do not, and especially when their frequency increases, corrosion must 
be suspected. Manufacturers try to mitigate the problem with a low-stress design and by aging 
the components or the finished seismometer (by extended storage, vibrations, or heating and 
cooling cycles). It is sometimes possible to release stresses and eliminate transient 
disturbances by hitting the pier around the seismometer with a hammer, a procedure that is 
recommended in each new installation. 
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5.6    Seismometer calibration 
 
5.6.1   Electrical and mechanical calibration 
 
The calibration of a seismometer establishes knowledge of the relationship between its input 
(the ground motion) and its output (an electric signal), and is a prerequisite for a 
reconstruction of the ground motion. Since precisely known ground motions are difficult to 
generate, one makes use of the equivalence between ground acceleration and an external force 
on the seismic mass, and calibrates seismometers with an electromagnetic force generated in a 
calibration coil. This is called an electrical or relative calibration. In the case of feedback 
seismometers an electrical calibration essentially characterizes the electronic feedback circuit 
but not the mechanical receiver. Only if the factor of proportionality between the current in 
the coil and the equivalent ground acceleration is known, the absolute responsivity to ground 
motion can be determined from an electric calibration. Otherwise, it must be determined from 
a mechanical experiment in which the seismometer is subject to a known mechanical motion 
or a tilt. This is called a mechanical or absolute calibration. Since precise mechanical 
calibration signals are difficult to generate over a large bandwidth, one does not normally 
attempt to determine the complete transfer function in this way.  
 
Sub-sections 5.6.2 to 5.6.7 are is mainly concerned with the electrical (relative) calibration 
although some methods may also be used for the mechanical calibration on a shake table 
(5.6.9). Procedures for the absolute mechanical calibration that do not require a shake table 
are presented in in 5.6.10 and 5.6.11. 
 
 
5.6.2   General conditions 
 
Calibration experiments are disturbed by seismic noise and tilt and should therefore be carried 
out in a basement room. However, the large operating range of modern seismometers permits 
a calibration with relatively large signal amplitudes, making background noise less of a 
problem than one might expect. Thermal drift is more serious because it interferes with the 
long-period response of broadband seismometers. For a calibration at long periods, 
seismometers must be protected from draft and allowed sufficient time to reach thermal 
equilibrium. Visible and digital recording in parallel is recommended. Recorders must be 
absolutely calibrated before they can serve to absolutely calibrate seismometers. The input 
impedance of recorders and the source impedance of sensors must be measured so that a 
correction can be applied for the voltage drop in the source impedance. 
 
 
5.6.3  Specific procedures for geophones 
 
Geophones usually have no calibration coil. The calibration current must then be sent through 
the signal coil where it produces an ohmic voltage in addition to the output signal generated 
by the motion of the mass. The undesired voltage can be compensated in a bridge circuit 
(Willmore 1959); the bridge is zeroed with the seismic mass locked or at a stop. When the 
calibration current and the output voltage are digitally recorded, it is more convenient to use 
only a half-bridge (Fig. 5.19) and to compensate the ohmic voltage numerically. The program 
calex (section 5.8) can do this automatically. The residual (the difference between the actual 
and the modeled response) is often dominated by nonlinear distortions (5.7). 
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Fig. 5.19   Half-bridge circuit for calibrating electromagnetic seismometers 
 
 
Geophones can be absolutely calibrated without a mechanical input provided that the total 
moving mass M is known and its motion is linear. In an electric calibration a geophone 
behaves like a resonant electric circuit. Its electrical impedance is 
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RC is the ohmic resistance of the coil, E is the generator constant of the electromagnetic 
transducer as in 5.2.8. The term after the plus sign is the response of a resonant electric circuit 
consisting of a capacitor C=M/E2, an inductor L=E2/S, and a resistor RD=E2/D in parallel. M, 
S, and D are the mechanical components of the pendulum as in 5.2.7. The analysis of the 
resonant response, either in time or in frequency domain, supplies all desired parameters when 
M is known. For an analysis in time domain, it is convenient to excite a transient response by 
interrupting a current through the signal coil (Willmore 1979, Rodgers et al. 1995). In this 
case the ohmic voltage disappears when the transient response begins. calex can also be used 
here. 
 
Another approach is illustrated in fig. 5.20. The electromagnetic part of the numerical 
damping is inversely proportional to the total damping resistance, the factor of proportionality 
being 0

2 2/ ωME . The generator constant E can thus be calculated from relative calibrations 
with different resistive loads, independent of the method used for the relative calibration. 
 

 
 

Fig. 5.20   Determining the generator constant from a plot of damping versus total damping 
resistance Rd = Rcoil + Rload. The horizontal units are microsiemens (reciprocal Megohms). 
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5.6.4   Calibration with sinewaves (obsolete) 
 
With a sinusoidal input, the output of a linear system is also sinusoidal, and the ratio of the 
two signal amplitudes is the absolute value of the transfer function. An experiment with 
sinewaves therefore permits a direct check of the transfer function, without any a-priori 
knowledge of its mathematical form and without waveform modeling. This is often the first 
step in the identification of an unknown system. A computer program would however be 
required to derive a parametric representation of the response from the measured values. A 
calibration with arbitrary signals, as described later, is more straightforward for this purpose. 
 
Calibration with sinewaves is time-consuming because the system must reach a steady state 
after each change of frequency, which can take more than 10 minutes for some broadband 
seismometers. The gain and phase delay can be read manually from a plotted Lissajous ellipse 
as in Fig.5.21. The accuracy of the evaluation depends on the purity of the sinewave. A better 
accuracy is obtained by numerical analysis of digitally recorded data. By fitting sinewaves to 
the signals, amplitudes and phases can be extracted for just one precisely known frequency at 
a time; distortions of the input signal don't matter then. If the test frequency is not digitally 
controlled, then it should be fitted as well. The fit should be computed for an integer number 
of cycles, and offsets should be removed from the data.  We offer a computer program sinfit 
for this purpose (section 5.8, sincal folder). Although the method is now obsolete for the 
purpose of calibration, it is useful for investigating unmodelled details of the response such as 
parasitic resonances; these might be lost in a more time-efficient broadband calibration. 
Another surviving application is the calibration of passive short-period seismometers in 
seismic stations where sinewaves can be remotely applied to the calibration coil but no other 
test signals are available. The evaluation can be done with a sincal program (section 5.8). 
 
 

 
 
            Fig. 5.21   Measuring the phase between two sine-waves with a Lissajous ellipse.  
 
 
Eigenfrequency f0 and damping h of seismometers with a conventional response can be 
determined graphically with a set of standard resonance curves on double-logarithmic paper.  
The measured amplitude ratios are plotted as a function of frequency f on the same type of 
paper and overlain with the standard curves (Fig. 5.22). The desired quantities can be read 
directly. The method is simple but not very accurate. 
 
EX 5.3 by J. Bribach and Ch. Teupser can be used for seismometer calibration by harmonic 
drive. 
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Fig. 5.22   Normalized resonance curves. 
 
 
 
5.6.5  Step response and weight-lift test (obsolete) 
 
The simplest, but only moderately accurate and now historical, calibration method is to 
observe the response of the system to a step input. The step signal can be generated by 
switching on or off a current through the calibration coil, or by applying or removing a 
constant mechanical force on the seismic mass, usually by lifting a weight. Horizontal sensors 
used to be absolutely calibrated with a V-shaped thread attached to the mass at one end, to a 
fixed point at the other end, and to the test weight at half length. The thread was then burned 
off for a soft release.  
 
The step-response experiment can be used both for a relative and an absolute calibration; 
when applicable, it is probably the simplest method for the latter. Using a known test weight 
w and knowing the seismic mass M, we also know the test signal: it is a step in acceleration 
whose magnitude is w/M times gravity (times a geometry factor when the force is applied 
through a thread). In case of a rotational pendulum, a correction factor must be applied when 
the force does not act at the center of gravity. The method has lost its former importance 
because the seismic mass of modern seismometers is not easily accessible, and the correction 
factor for rotational motion is not supplied by the manufacturers. 
 
In the context of relative calibration, the step-response method is still useful as a quick and 
intuitive test, and has the advantage that it can be visually evaluated. The calex method covers 
the step response as well. Fig. 5.23 shows the characteristic step responses of second-order 
high-pass, band-pass, and low-pass filters with 2/1  of critical damping. 
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Fig. 5.23   Normalized step responses of second-order high-pass, band-pass and low-pass 
filters.  

 

Each response is a strongly damped oscillation around its asymptotic value. With the 
specified damping, the systems are Butterworth filters, and the amplitude decays to π−e  or 
4.3% within one half-wave. The ratio of two subsequent amplitudes of opposite polarity is 
known as the overshoot ratio. It can be evaluated for the numerical damping h: when xi and 
xi+n are two (peak-to-peak) amplitudes n periods apart, with integer or half-integer n, then 
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The free period, in principle, can also be determined from the impulse or step response of the 
damped system but should be measured preferably without electrical damping so that more 
oscillations can be observed. A system with the free period T0 and damping h oscillates with 

the period 2
0 1/ hT −  and the overshoot ratio )21/exp( hh −−π .  

 
 
5.6.6  Calibration with arbitrary signals 
 
In most cases, the purpose of calibration is to obtain the parameters of an analytic 
representation of the transfer function. Assuming that its mathematical form is known, the 
task is to determine the parameters from an experiment in which both the input and the output 
signals are known. As compared to other methods where a predetermined input signal is used 
and only the output signal is recorded, recording both signals has the additional advantage of 
eliminating the transfer function of the recorder from the analysis. 
 
Calibration is a classical inverse problem that can be solved with standard least-squares 
methods. The general solution is schematically depicted in Fig. 5.24. A computer algorithm 
(filter 1) is implemented that represents the seismometer as a filter and permits the 
computation of its response to an arbitrary input. An inversion scheme (3) is programmed 
around the filter algorithm in order to find best-fitting filter parameters for a given pair of 
input and output signals. The purpose of filter 2 is explained below. The sensor is then 
calibrated with a test signal (4) for which the response of the system is sensitive to the 
unknown parameters but which is otherwise arbitrary. When the system is linear, parameters 
obtained from one test signal will also predict the response to the other signal.                                                                                           
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Fig. 5.24   Block diagram of the calex procedure. Storage and retrieval of the data are omitted 
from the figure. 
 
 
When the transfer function has been correctly parameterized and the inversion has converged, 
then the residual error consists mainly of noise, drift, and nonlinear distortions. At a signal 
level of about one-third of the operating range, typical residuals are 0.03% to 0.05% rms for 
force- balance seismometers and ≥ 1% for passive electrodynamic sensors. 
 
The approximation of a rational transfer function with a discrete filtering algorithm is not 
trivial. The program calex (section 5.8) uses an impulse-invariant recursive filter (Schuessler, 
1981). This method formally requires that the seismometer has a negligible response at 
frequencies outside the Nyqvist bandwidth of the recorder, a condition that is severely 
violated by most digital seismographs; but this problem can be circumvented with an 
additional digital low-pass filtration (Filter 2 in Fig. 5.24) that limits the bandwidth of the 
simulated system. Signals from a typical calibration experiment are shown in Fig. 5.25. A 
sweep as a test signal permits the residual error to be visualized as a function of time or 
frequency. Since essentially only one frequency is present at a time, the time axis may as well 
be interpreted as a frequency axis. 
 

With an appropriate choice of the test signal, other methods like the calibration with sine-
waves step functions, random noise or random telegraph signals, can be duplicated and 
compared to each other. An advantage of the calex algorithm is that it makes no use of special 
properties of the test signal, such as being sinusoidal, periodic, step-like or random. 
Therefore, test signals can be short (a few times the free period of the seismometer) and can 
be generated with the most primitive means, even by hand (you may turn the dial of a 
sinewave generator by hand, or even produce the test signal with a battery and a switch or 
potentiometer). A breakout box or a special cable may, however, be required for feeding the 
calibration signal into the digital recorder. 

 
For a quick and easy check of the transfer function, the simple method of spectral division 
may be sufficient. When the input signal (the stimulus) and the output signal (the response) 
have both been recorded, and if the system was quiet at the beginning and the end of the 
record, then dividing the Fourier transform of the output signal by that of the input signal may 

result in a reasonable approximation to the actual response, at least in a limited bandwidth. A 
parametric (mathematical) representation of the response, such as by poles and zeros, is 
however more difficult to obtain in this way. 
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Fig. 5.25   Electrical calibration of an STS2 seismometer with calex. Traces from top to 
bottom: input signal (a sweep with a total duration of 10 min); output signal; synthetic output 
signal; residual. The rms residual is 0.05 % of the rms output. See also EX 5.4. 

 

Some other routines for seismograph calibration and system identification are contained in the 
PREPROC software package (Plešinger et al., 1996).  

 

5.6.7  Specific procedure for triaxial seismometers 
 

In homogeneous-triaxial seismometers such as the Streckeisen STS2 and the Nanometrics 
Trillium models, transfer functions in a strict sense can only be attributed to the individual U, 
V, W sensors, not to the X, Y, Z outputs. Formally, the response of a triaxial seismometer to 
arbitrary ground motions is described by a nearly diagonal 3 x 3 matrix of transfer functions 
relating the X, Y, Z output signals to the X, Y, Z ground motions. This is also true for 
conventional three-component sets if they are not perfectly aligned; only the composition of 
the matrix is different. 

 

However, if the U, V, W sensors are reasonably well matched, then we need not care about a 
matrix of transfer functions. The X, Y, Z channels can then each be described by a single 
transfer function that is a weighted average of those of the U, V, W sensors: 
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This formula applies to transfer functions or parameters but not to signals; the matrix 
elements in (5.33) are the squares of those in 5.27.  For any real instrument they will differ 
slightly from their nominal values but this is negligible in the present context. 
 
The X, Y, Z outputs can thus be calibrated as if they represented single-component sensors. In 
order to simulate a ground acceleration in one of the X, Y, or Z directions, simultaneous 
currents must be sent through the U, V, W calibration coils so that an output signal appears 
only at one of the X, Y, Z outputs. For the Z component this requires equal currents through 
the U, V, W coils. For the X or Y direction, the three currents must however have different 
magnitudes and polarities, which requires a slightly more complicated test arrangement. This 
inconvenience is circumvented by a procedure introduced by Peter Davis (UCSD): calibrate 
the vertical output with equal currents into the U, V, W coils but record the X and Y output 
signals as well. Unless all transfer functions happen to be identical, small residual signals will 
appear at the X and Y outputs. They contain information on the X and Y transfer functions. 
Use the inverse (transposed) of the signal transformation matrix (5.27) to reconstruct the U, 
V, W signals, analyze these for their transfer functions, and recombine the results according 
to (5.33). A computer program trical, essentially a combination of triax and calex, is 
available for this procedure (section 5.8, calex folder). The experiment normally requires four 
digitizer channels; if only three are available, one must use a predetermined stimulus such as a 
pseudo-random telegraph signal that can be numerically duplicated.  
 
Using ground noise or other seismic signals, an unknown sensor can be calibrated against a 
known one by operating the two sensors side by side (Pavlis and Vernon, 1994). The method 
is limited to a frequency band where suitable seismic signals occur well above the 
instrumental noise level and are spatially coherent between the two instruments. The 
instruments must be close to each other on the same pier. The frequency response and the 
gain of the unknown instrument can be determined at the same time. We offer a program 
inverseif (section 5.8) for this analysis. If the frequency response of both sensors is already 
known or can be measured electrically, then it will suffice to deconvolve both records to a 
common response and compare the signal amplitudes in a frequency band where the 
waveforms are identical.  
 
In a similar way, the orientation of a three-component borehole seismometer may be 
determined by comparison with a reference instrument at the surface. The mathematical 
problem can be formulated as follows: for each component yi of the borehole seismometer 
find a set of three directional coefficients ai1, ai2, ai3 so that the output signal yi is best 
represented by yi = ai1 x1 + ai2 x2 + ai3 x3 in a least-squares sense, where x1, x2, x3 are the 
output signals of the three components of the reference sensor. Almost any seismic signal that 
is recorded with a good signal-to-noise ratio can be used as a test signal. Instrumental 
responses must be normalized (deconvolved to a common frequency response) and an 
additional band-pass filtration is recommended. The 3*3 matrix A = (aik) contains 
information both on the orientation and on the orthogonality of the borehole sensor (assuming 
proper orientation and orthogonality of the reference sensor). The x and y components can 
also be interchanged in the formulation of the problem; one then obtains the inverse matrix 
that is needed to correct the borehole signals. We offer the linreg3 software (section 5.8, 
linregress folder) for calculating the aik coefficients. Commercial packages for linear algebra 
like MATLAB also offer convenient solutions.  
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5.6.8  Calibration on a shake table 
 
Using a shake table is the most direct way of obtaining an absolute calibration. In practice, 
however, precision is usually poor outside a frequency band roughly from 0.5 to 5 Hz. At 
higher frequencies, a shake table loaded with a broadband seismometer may develop parasitic 
resonances, and inertial forces may cause undesired rotations. At low frequencies, the 
maximum displacement and thus the signal-to-noise ratio may be insufficient, and the motion 
may be non-uniform due to friction or roughness in the bearings. Still worse, most shake 
tables do not produce a purely translational motion but also some tilt. Gravity is then coupled 
into the seismic signal. Its relative contribution increases with the square of the signal period 
and causes an intolerable error in the horizontal components at long periods. One might think 
that a tilt of 10 µrad per mm of linear motion should not matter; however, at periods longer 
than 20 s, such a tilt will cause a larger output signal than the linear motion. At a period of 1 s, 
the effect of the same tilt would be negligible. Long-period measurements on a horizontal 
shake table, if possible at all, require extreme care. 
 
Electromagnetic shake tables may have large stray fields. They can be picked up by 
electromagnetic transducers or electronic circuits in the sensor so strongly that no calibration 
is possible at any frequency.  
 
Although most calibration methods mentioned in the previous section are applicable on a 
shake table, the preferred method is to record both the motion of the table (as measured with a 
displacement transducer) and the output signal of the seismometer, and to analyze these 
signals by linear modeling with calex (section 5.8) or equivalent software. Depending on the 
definition of active and passive parameters, one might determine only the absolute gain 
(responsivity, generator constant) or any number of additional parameters of the frequency 
response. calex permits the elimination of tilt effects from a shake-table calibration, under the 
assumption that the tilt is proportional to the displacement. 
 
 
5.6.9  Calibration by stepwise motion 
 
The movable tables of machine tools like lathes and milling machines, and of mechanical 
balances, can replace a shake table for the absolute calibration of seismometers. Also, a 
portable “step table” for seismometer calibration is now commercially available. The idea is 
to place the seismometer on the table, let it come to equilibrium, then move the table by a 
known amount and let it rest again. The apparent motion of the frame can then be calculated 
by inverse filtration of the output signal and compared with the known mechanical 
displacement. Since the calculation involves triple integrations, offset and drift must be 
carefully removed from the seismic trace. The main contribution to drift in the apparent 
horizontal velocity comes from tilt associated with the motion of the table. With the method 
subsequently described, it is possible to separate the contributions of displacement and tilt 
from each other so that the displacement can be reconstructed with good accuracy. This 
method of calibration is most convenient because it uses only normal workshop equipment. 
The inherent precision of machine tools and the use of relatively large motions eliminate the 
difficulty of measuring small mechanical displacements. A FORTRAN program dispcal is 
available for the evaluation (section 5.8).  
 
The precision of the method depends on avoiding two main sources of error: 
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1 - Restoring ground displacement from the seismic signal (a process of inverse filtration) is 
uncritical for broadband seismometers but requires a precise knowledge of the transfer 
function for short-period seismometers. Instruments with unstable parameters (such as 
electromagnetic seismometers) must be electrically calibrated while installed on the test table. 
However, once the response is known, the restitution of absolute ground motion is no problem 
even for a geophone with a free period of 0.1 s. 
 
2 - The effect of tilt can only be removed from the displacement signal when the motion is 
sudden and short. The tilt is unknown during the motion, and since it is equivalent to an 
acceleration, it produces an unknown offset in the displacement trace that cannot be 
distinguished from a true displacement. The magnitude of this error signal can however be 
estimated from the apparent velocity observed when the true motion has ended. In contrast, 
static tilt before and after the motion produces linear trends in the velocity, which are easily 
removed.  
 
The computational evaluation consists in the following major steps (Fig. 5.26): 
 

1)  the trace is de-convolved with the velocity transfer function of the seismometer. 
2)  the trace is piecewise de-trended so that it is close to zero in the motion-free intervals. 
     Interpolated trends are removed from the interval of motion. 
3)  the trace is integrated to represent displacement 

4)  the displacement steps are measured and compared to the actual motion. 

 

 
Fig. 5.26   Absolute mechanical calibration of an STS1-BB (20s) seismometer on the table of 
a milling machine, evaluated with DISPCAL. The table was manually moved in 14 steps of 2 
mm each (one full turn of the dial at a time). Traces from top to bottom: recorded BB output 
signal; restored and de-trended frame velocity; restored frame displacement. 

 



 

 44 

In principle, a single step-like displacement is all that is needed. However, the experiment 
takes so little time that it is convenient to produce a dozen or more equal steps, average the 
results, and do some error statistics. On a milling machine or lathe, it is recommended to 
install a mechanical device that stops the motion after each full turn of the spindle. On a 
balance, the table is repeatedly moved from stop to stop. The displacement may be measured 
with a micrometer dial or determined from the motion of the beam (Fig. 5.27).  
 

 
 
Fig. 5.27   Calibrating a vertical seismometer on a mechanical balance. When a mass of w1 
grams at some point X near the end of the beam is in balance with w2 grams on the table or 
compensated with a corresponding shift of the sliding weight, then the motion of the table is 
by a factor w1/w2 smaller than the motion at X. 
 
From the mutual agreement between different experiments, and from the comparison with 
shake-table calibrations, the absolute accuracy is estimated to be better than 1%. 
 
EX 5.2 by J. Bribach is an exercise for estimating seismometer parameters by step function.  
 
 
5.6.10  Calibration with tilt 
 
Accelerometers can be statically calibrated on a tilt table. A step table with an additional tilt 
platform can likewise be used. Starting from a horizontal position, the fraction of gravity 
coupled into the sensitive axis equals the sine of the tilt angle. (A tilt table is not required for 
accelerometers with an operating range exceeding g1± ; these are simply turned upside 
down.). Force-balance seismometers normally have a mass-position output which is a slowly 
responding acceleration output. With some patience, this output can likewise be calibrated on 
a tilt table; the small static tilt range of sensitive broadband seismometers, however, may be 
inconvenient. The transducer constant of the calibration coil is then obtained by sending a 
direct current through it and comparing its effect with the tilt calibration. Finally, by exciting 
the coil with a sine wave whose acceleration equivalent is now known, the absolute 
calibration of the broadband output is obtained. The method is not explained in more detail 
here because we propose a simpler method. Anyway, seismometers of the homogeneous-
triaxial type cannot be calibrated with static tilt because they do not have X, Y, Z mass-
position signals. 
 
The method that we propose (for horizontal components only; program tiltcal, section 5.8) is 
similar to what was described under 5.6.10, but this time we calibrate the seismometer with 
known steps of tilt, and evaluate the recorded output signal for acceleration rather than 
displacement. 
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 This is simple: the difference between the drift rates of the de-convolved velocity trace before 
and after the step equals the tilt-induced acceleration. No baseline interpolation is required. If 
a tilt platform is not available, one can also tilt the seismometer with a lever under one of its 
feet, or by pulling out a strip of shim stock. In order to improve the signal-to-noise ratio, it is 
possible to use a tilt step that exceeds the static operating range of the seismometer. One then 
has to monitor the output signal and reverse the tilt before the output signal reaches the 
clipping level. 
 

5.7   Testing for non-linear distortions 
 
As we have seen in section 5.2.1, a linear system does not change the waveform of a 
sinewave. A system that does is said to produce nonlinear distortions. (Linear distortions are 
those resulting from the frequency-dependent response of a linear system; they affect only 
waveforms that are not sinusoidal.) A nonlinear system generates spurious signals with 
frequencies that are multiples (harmonics), sums and differences of the original frequencies. 
Other than in audio equipment where the high-frequency distortions are most annoying, in 
seismic recording  the distortion (intermodulation) products with low frequencies are most 
obnoxious because they can cause large errors when signals are inversely filtered or integrated 
in an attempt to reconstruct ground  displacement. 
 
Testing a seismometer for nonlinear distortions, and reporting results properly, is a complex 
task and one must often be satisfied with a partial answer. Distortions can originate in the 
mechanical receiver, in the transducers, and in electronic circuits. While for a linear system a 
current through the calibration coil is unconditionally equivalent to a mechanical acceleration 
(see 5.2.7), with respect to nonlinear distortion it is not. An electrically linear sensor can still 
be nonlinear for a seismic input signal. An electrically nonlinear sensor is however unlikely to 
respond linearly to ground motion, so electrical tests are not useless; but such tests essentially 
probe the feedback circuit, not the transducers or the mechanical receiver.  A serious test for 
nonlinear distortions therefore requires a nearly sinusoidal mechanical input from a shake 
table. 
 
Fortunately it turns out that the shake table needs not be more linear than the seismometer if 
we use the right method. Two methods are available: 
 
1 – The classical two-tone test. The shake table is excited with two superimposed sinewaves 
of nearly the same frequency, such as 1.00 and 1.02 Hz. Nonlinearity, either of the table or of 
the sensor, will generate a spurious output signal at the difference (beat) frequency ωB , here 
0.02 Hz. It can be separated from the 1 Hz signals by low-pass filtration or Fourier analysis. 
The contributions from the table and from the seismometer can be separated from each other 
by repeating the experiment at different beat frequencies (0.05 Hz, 0.02 Hz, 0.01 Hz or even 
lower). Nonlinearity of the table motion causes an offset of the average table position; the 
amplitude of the equivalent acceleration at the beat frequency is proportional to ωB

2. 
Nonlinearity in the seismometer causes a spurious acceleration signal whose amplitude is 
independent of ωB. Thus, at sufficiently low beat frequencies, seismometer nonlinearity will 
always predominate. (Whether we see the beat signal or not depends, of course, on the noise 
level.) Other signal frequencies (2.00 and 2.02 Hz, 5.00 and 5.02 Hz etc.) should also be used 
because the distortion level depends strongly on the signal frequency.  
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2 – Linear modeling. The table is excited with a sinewave or a sweep signal. Its motion is 
measured with a displacement transducer (which may already be there as part of the control 
electronics) and recorded together with the output signal. With calex or an equivalent method, 
we can then compute a synthetic output signal and compare it to the observed one. The 
difference (residual, misfit) is composed of seismic noise, nonlinear distortions, and an error 
signal due to imperfect modeling. Nonlinear distortions can be distinguished from the other 
contributions because in this experiment their most prominent frequency is twice the input 
frequency. Although these distortions may not be harmful by themselves, we know that they 
are always associated with the low-frequency distortions for which the two-tone test was 
designed. If we want to see these directly, we can duplicate the two-tone test with linear 
modeling by using a two-tone input signal. 
 
The combination of both methods – linear modeling followed by low-pass filtration of the 
residual – is especially suitable to detect low-frequency distortions (intermodulation). Modern 
broadband seismometers typically have mechanical intermodulation ratios around -100 dB in 
the same units. Electrical intermodulation ratios are typically around -130 dB in the same 
units. In other units, the dependence on the signal and beat frequencies is normally so strong 
that it would not be meaningful to quote a typical value. The test procedures outlined here are 
described in more detail in an USGS Open-File Report (Hutt et al. 2009, p. 21-
24; http://pubs.usgs.gov/of/2009/1295/). 
 
 

5.8  Free Software 
 
All software mentioned in the text  and printed in bold black letters can be downloaded from 
HERE or from the summary listing Download Programs & Files (see  NMSOP-2 content 
Overview on the cover page). A still larger body of software for data analysis, instrument 
testing, generating synthetic signals, and tutorial purposes is found at 
 
http://www.geophys.uni-stuttgart.de/~erhard/downloads/  
http://www.software-for-seismometry.de/   
 
Test data are supplied where appropriate. Use the “software overview” on the given websites 
to select what you need, go to the appropriate software folder, and read the “program 
descriptions” for details.  
 
A supplementary  calibrat system, offered by J. Bribach, can also be downloaded via the 
summary listing. It comprises the programs response, caliseis and seisfilt.  A short 
description of these programs is given in PD 5.1. 
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Three careful reviews by the Editor of the NMSOP, Peter Bormann, and suggestions by Axel 
Plešinger and Jens Havskov have significantly improved the clarity and completeness of this 
text. A shorter version (Wielandt, 2002b), with some advanced topics added, appeared in part 
A of the IASPEI International Handbook of Earthquake and Engineering Seismology, ed. W. 
H. Lee et al. (2002), ISBN-13: 978-0-12-440652-0, ISBN-10: 0-12-440652-1. 
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