Topic	Moment-tensor determination and decomposition
Authors	Frank Krüger, Potsdam University, Institute of Geosciences, 14415 Potsdam, E-mail: kruegerf@ geo.uni-potsdam.de Günter Bock 出 (formerly GeoForschungsZentrum Potsdam, Germany)
Version	August 2000

1 Aim

The tasks in this exercise are aimed at making you more familiar with the use and meaning of the basic equations and matrix formalisms in seismic moment-tensor presentation and decomposition.

2 Formulae used

The following formulae are used:

$$
\begin{equation*}
d_{s}(\mathrm{x}, t)=M_{k j}\left[G_{s k, j}(\mathrm{x}, \xi, t) * \mathrm{~s}(t)\right] \tag{1}
\end{equation*}
$$

which is identical with Eq. (3.70) in Chapter 3, with $d_{s}(\mathrm{x}, t)$ - ground displacement at position x and time t. (1) simplifies to $d_{s}(\mathrm{x}, t)=M_{k j} G_{s k, j}(t)$ if the source-time function $\mathrm{s}(t)=\delta(t)$ is a needle (spike) impulse.

$$
\begin{equation*}
M_{k j}=A\left\{\Lambda v_{i} s_{i} \delta_{k j}+\mu\left(v_{k} s_{j}+v_{j} s_{k}\right)\right\} \tag{2}
\end{equation*}
$$

which describes the seismic moment tensor for an isotropic medium in the most general way with Λ - elastic Lamé-parameter, μ - shear modulus, A - area of fault rupture, s - slip vector on the fault and v - normal to the fault plane. Note that the scalar seismic moment $M_{\mathrm{o}}=\mu \mathrm{A}$ $|s|$. The term $\left(v_{k} s_{j}+v_{j} s_{k}\right)$ forms a tensor D describing a double-couple source. In case of an explosion it is zero. And the equations:

$$
\begin{align*}
& M_{\mathrm{xx}}=-M_{\mathrm{o}}\left(\sin \delta \cos \lambda \sin 2 \phi+\sin 2 \delta \sin \lambda \sin ^{2} \phi\right) \\
& M_{\mathrm{xy}}=M_{\mathrm{o}}(\sin \delta \cos \lambda \cos 2 \phi+0.5 \sin 2 \delta \sin \lambda \sin 2 \phi) \\
& M_{\mathrm{xz}}=-M_{\mathrm{o}}(\cos \delta \cos \lambda \cos \phi+\cos 2 \delta \sin \lambda \sin \phi) \tag{3}\\
& M_{\mathrm{yy}}=M_{\mathrm{o}}\left(\sin \delta \cos \lambda \sin 2 \phi-\sin 2 \delta \sin \lambda \cos ^{2} \phi\right) \\
& M_{\mathrm{yz}}=-M_{\mathrm{o}}(\cos \delta \cos \lambda \sin \phi-\cos 2 \delta \sin \lambda \cos \phi) . \\
& M_{\mathrm{zz}}=M_{\mathrm{o}} \sin 2 \delta \sin \lambda
\end{align*}
$$

with ϕ - strike direction and δ - dip angle of the rupture plane, and λ - slip direction (rake angle).

3 Tasks

Task 1:

By using Equations (2) and (3) above, respectively, determine the Cartesian moment tensors for:
a) an underground nuclear explosion;
b) a double-couple focal mechanism with strike $\phi=0^{\circ}$, $\operatorname{dip} \delta=90^{\circ}$, and rake $\lambda=0^{\circ}$;
c) a double-couple focal mechanism with $\quad \phi=0^{\circ}, \quad \delta=45^{\circ}$, and $\quad \lambda=90^{\circ}$;
d) a double-couple focal mechanism with $\quad \phi=0^{\circ}, \quad \delta=90^{\circ}$, and $\quad \lambda=90^{\circ}$.

Task 2:

Determine the moment tensor for a tension crack in the direction normal to the fault plane in a homogenous isotropic medium. Use Equation (2) of the exercise.

Task 3:

The relation Equation (3) between moment tensor and parameters of a shear dislocation can be expressed as a weighted sum of 4 elementary moment tensors:

$$
M=\cos \delta \cos \lambda M_{1}+\sin \delta \cos \lambda M_{2}-\cos 2 \delta \sin \lambda M_{3}+\sin 2 \delta \sin \lambda M_{4}
$$

Derive the elements of M_{1}, M_{2}, M_{3}, and M_{4} and discuss the shear dislocations that are represented by the elementary moment tensors.

4 Solutions

Task 1:

a) $M=M_{0}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
b) $\quad M=M_{0}\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
c) $\quad M=M_{0}\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$
d) $\quad M=M_{0}\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right)$

Task 2:

$$
M=\left(\begin{array}{ccc}
\Lambda s_{3} & 0 & 0 \\
0 & \Lambda s_{3} & 0 \\
0 & 0 & (\Lambda+2 \mu) s_{3}
\end{array}\right)
$$

Task 3:

$M_{1}=M_{0}\left(\begin{array}{ccc}0 & 0 & -\cos \phi \\ 0 & 0 & -\sin \phi \\ -\cos \phi & -\sin \phi & 0\end{array}\right) \rightarrow \delta=0^{\circ} ; \lambda=0^{\circ}$, i.e., horizontal slip on horizontal fault
$M_{2}=M_{0}\left(\begin{array}{ccc}-\sin 2 \phi & \cos 2 \phi & 0 \\ \cos 2 \phi & \sin 2 \phi & 0 \\ 0 & 0 & 0\end{array}\right) \quad \rightarrow \delta=90^{\circ} ; \lambda=0^{\circ}$, i.e., strike slip on vertical fault
$M_{3}=M_{0}\left(\begin{array}{ccc}0 & 0 & \sin \phi \\ 0 & 0 & -\cos \phi \\ \sin \phi & -\cos \phi & 0\end{array}\right) \rightarrow \delta=90^{\circ} ; \lambda=90^{\circ}$, i.e., dip slip on a vertical fault
$M_{4}=M_{0}\left(\begin{array}{ccc}-\sin ^{2} \phi & \frac{1}{2} \sin 2 \phi & 0 \\ \frac{1}{2} \sin 2 \phi & -\cos ^{2} \phi & 0 \\ 0 & 0 & 1\end{array}\right) \rightarrow \delta=45^{\circ} ; \lambda=90^{\circ}$, i.e. dip slip on a 45° dipping fault.

