Title	Plotting seismograph response
	(BODE-diagram)
Author	Jens Bribach , GFZ German Research Centre for Geosciences, Dept. 2, Telegrafenberg, D-14473 Potsdam, Germany: Fax: +49 331 288 1266:
	E-mail: <u>brib@gfz-potsdam.de</u>
Version	May 2001; DOI: 10.2312/GFZ.NMSOP-2_EX_5.1

1 Aim

The exercise aims at making you familiar with the easy way of construction of a BODEdiagram which displays the transfer function of a given device as a plot of logarithmic amplitude A and of linear phase shift ϕ versus logarithmic frequency f (or period 1/f). Its advantage is that response curves are approximated by straight lines (see IS 5.2). The main features are:

- any Pole in the transfer function generates an amplitude decay proportional to frequency f (20 dB per decade or 6 dB per octave) and a phase shift φ of -90°;
- any Zero causes a slope of 1:1 too and a phase shift of +90°;
- corner frequencies (e.g., of filters) correspond to the point of intersection of two straight lines.

All stages of a signal-transfer chain can thus be constructed component-wise, one after the other. It is recommended to decompose all functions into parts of 1^{st} or 2^{nd} order. One gets the complete transfer function by multiplying these individual functions. In both the logarithmic amplitude scale and the linear phase scale this means adding the related individual curves.

2 Tasks

Task 1: Plot the BODE-diagrams (amplitude only) of the following seismograph components:

Seismometer	
Transducer Constant	$G_{S} = 15.915 \text{ Vs/m}$
Natural Period	$T_s = 5 s$
Attenuation	$D_{S} = 0.707$
HIGH Pass HP1 (1 st order)	
Magnification	$A_{H1} = 3$
Corner Frequency	$f_{H1} = 0.01 \text{ Hz}$
LOW Pass LP1 (1 st order)	
Magnification	$A_{L1} = 5$
Corner Frequency	$f_{L1} = 0.2 \text{ Hz}$
LOW Pass LP2 (2 nd order)	
Magnification	$A_{L2} = 2$
Corner Frequency	$f_{L2} = 10 \text{ Hz}$
Attenuation	$D_{L2} = 0.707$

Task 2: Plot the overall amplitude response of the system approximated by straight lines on double logarithmic paper (see Figure 1).

Exercise

Figure 1

3 Solution

The solution to this exercise is given in Figure 2 below.

Figure 2 Overall BODE-diagram (solid curve) for the seismograph amplitude response. It results from the logarithmic addition of the BODE-diagrams of all individual components given in Task 1.